Sarah A Morris, Kristine R Crews, Randall T Hayden, Clifford M Takemoto, Wenjian Yang, Donald K Baker, Ulrich Broeckel, Mary V Relling, Cyrine E Haidar
{"title":"Incorporating G6PD genotyping to identify patients with G6PD deficiency.","authors":"Sarah A Morris, Kristine R Crews, Randall T Hayden, Clifford M Takemoto, Wenjian Yang, Donald K Baker, Ulrich Broeckel, Mary V Relling, Cyrine E Haidar","doi":"10.1097/FPC.0000000000000456","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is a common X-linked enzyme disorder associated with hemolytic anemia after exposure to fava beans or certain medications. Activity testing is the gold standard for detecting G6PD deficiency; however, this test is affected by various hematologic parameters. Clinical G6PD genotyping is now included in pharmacogenetic arrays and clinical sequencing efforts and may be reconciled with activity results. Patients (n = 1391) enrolled on an institutional pharmacogenetic testing protocol underwent clinical G6PD genotyping for 164 G6PD variants. An algorithm accounting for known interferences with the activity assay is proposed. We developed clinical decision support alerts to inform prescribers when high-risk medications were prescribed, warning of gene-drug interactions and recommending therapy alteration. Of 1391 patients with genotype results, 1334 (95.9%) patients were predicted to have normal G6PD activity, 30 (2.1%) were predicted to have variable G6PD activity and 27 (2%) were predicted to have deficient G6PD activity. Of the 417 patients with a normal genotype and an activity result, 415 (99.5%) had a concordant normal G6PD phenotype. Of the 21 patients with a deficient genotype and an activity result, 18 (85.7%) had a concordant deficient activity result. Genotyping reassigned phenotype in five patients with discordant genotype and activity results: three switched from normal to deficient, and two switched from deficient to normal. G6PD activity and genotyping are two independent testing methods that can be used in conjunction to assign a more informed G6PD phenotype than either method alone.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":"32 3","pages":"87-93"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976699/pdf/nihms-1730117.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000456","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is a common X-linked enzyme disorder associated with hemolytic anemia after exposure to fava beans or certain medications. Activity testing is the gold standard for detecting G6PD deficiency; however, this test is affected by various hematologic parameters. Clinical G6PD genotyping is now included in pharmacogenetic arrays and clinical sequencing efforts and may be reconciled with activity results. Patients (n = 1391) enrolled on an institutional pharmacogenetic testing protocol underwent clinical G6PD genotyping for 164 G6PD variants. An algorithm accounting for known interferences with the activity assay is proposed. We developed clinical decision support alerts to inform prescribers when high-risk medications were prescribed, warning of gene-drug interactions and recommending therapy alteration. Of 1391 patients with genotype results, 1334 (95.9%) patients were predicted to have normal G6PD activity, 30 (2.1%) were predicted to have variable G6PD activity and 27 (2%) were predicted to have deficient G6PD activity. Of the 417 patients with a normal genotype and an activity result, 415 (99.5%) had a concordant normal G6PD phenotype. Of the 21 patients with a deficient genotype and an activity result, 18 (85.7%) had a concordant deficient activity result. Genotyping reassigned phenotype in five patients with discordant genotype and activity results: three switched from normal to deficient, and two switched from deficient to normal. G6PD activity and genotyping are two independent testing methods that can be used in conjunction to assign a more informed G6PD phenotype than either method alone.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.