Unraveling the Development of an Algorithm for Recognizing Primary Emotions Through Electroencephalography.

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Neural Systems Pub Date : 2023-01-01 DOI:10.1142/S0129065722500575
Jennifer Sorinas, Juan C Fernandez Troyano, Jose Manuel Ferrández, Eduardo Fernandez
{"title":"Unraveling the Development of an Algorithm for Recognizing Primary Emotions Through Electroencephalography.","authors":"Jennifer Sorinas,&nbsp;Juan C Fernandez Troyano,&nbsp;Jose Manuel Ferrández,&nbsp;Eduardo Fernandez","doi":"10.1142/S0129065722500575","DOIUrl":null,"url":null,"abstract":"<p><p>The large range of potential applications, not only for patients but also for healthy people, that could be achieved by affective brain-computer interface (aBCI) makes more latent the necessity of finding a commonly accepted protocol for real-time EEG-based emotion recognition. Based on wavelet package for spectral feature extraction, attending to the nature of the EEG signal, we have specified some of the main parameters needed for the implementation of robust positive and negative emotion classification. Twelve seconds has resulted as the most appropriate sliding window size; from that, a set of 20 target frequency-location variables have been proposed as the most relevant features that carry the emotional information. Lastly, QDA and KNN classifiers and population rating criterion for stimuli labeling have been suggested as the most suitable approaches for EEG-based emotion recognition. The proposed model reached a mean accuracy of 98% (s.d. 1.4) and 98.96% (s.d. 1.28) in a subject-dependent (SD) approach for QDA and KNN classifier, respectively. This new model represents a step forward towards real-time classification. Moreover, new insights regarding subject-independent (SI) approximation have been discussed, although the results were not conclusive.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 1","pages":"2250057"},"PeriodicalIF":6.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500575","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The large range of potential applications, not only for patients but also for healthy people, that could be achieved by affective brain-computer interface (aBCI) makes more latent the necessity of finding a commonly accepted protocol for real-time EEG-based emotion recognition. Based on wavelet package for spectral feature extraction, attending to the nature of the EEG signal, we have specified some of the main parameters needed for the implementation of robust positive and negative emotion classification. Twelve seconds has resulted as the most appropriate sliding window size; from that, a set of 20 target frequency-location variables have been proposed as the most relevant features that carry the emotional information. Lastly, QDA and KNN classifiers and population rating criterion for stimuli labeling have been suggested as the most suitable approaches for EEG-based emotion recognition. The proposed model reached a mean accuracy of 98% (s.d. 1.4) and 98.96% (s.d. 1.28) in a subject-dependent (SD) approach for QDA and KNN classifier, respectively. This new model represents a step forward towards real-time classification. Moreover, new insights regarding subject-independent (SI) approximation have been discussed, although the results were not conclusive.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过脑电图揭示识别初级情绪的算法的发展。
情感脑机接口(aBCI)不仅对患者,而且对健康人都有广泛的潜在应用,这使得寻找一种普遍接受的基于脑电图的实时情感识别协议的必要性更加明显。基于小波包进行频谱特征提取,考虑到脑电信号的性质,给出了实现鲁棒正、负情绪分类所需的一些主要参数。12秒是最合适的滑动窗口大小;由此,提出了一组20个目标频率定位变量,作为携带情感信息的最相关特征。最后,QDA分类器和KNN分类器以及刺激标记的总体评级标准被认为是最适合用于基于脑电图的情绪识别的方法。在QDA和KNN分类器的主题依赖(SD)方法中,所提出的模型分别达到98% (SD值1.4)和98.96% (SD值1.28)的平均准确率。这个新模型向实时分类又迈进了一步。此外,关于学科独立(SI)近似的新见解已被讨论,尽管结果不是决定性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
期刊最新文献
Epileptic Seizure Detection with an End-to-end Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model A graph-based neural approach to linear sum assignment problems Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks sEMG-based Inter-Session Hand Gesture Recognition via Domain Adaptation with Locality Preserving and Maximum Margin Cultural Differences in the Assessment of Synthetic Voices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1