Igor Zolotukhin, Olga Golovanova, Oksana Efremova, Veronika Golovina, Evgeny Seliverstov
{"title":"Monocyte chemoattractant protein 1 plasma concentration in blood from varicose veins decreases under venoactive drug treatment.","authors":"Igor Zolotukhin, Olga Golovanova, Oksana Efremova, Veronika Golovina, Evgeny Seliverstov","doi":"10.23736/S0392-9590.22.04940-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vein-specific inflammation leads to vascular smooth muscle cells proliferation and extracellular matrix degradation of vein wall. This process is known as remodeling and is promoted by \"trapped\" leukocytes. Monocyte chemoattractant protein 1 (MCP-1) is a chemokine responsible for trafficking of leukocytes from blood to vein wall. The aim of this study was to measure the MCP-1 concentration in varicose veins blood before and after venoactive drug therapy and to compare it with a concentration of blood from varicose veins of subjects who did not receive drug treatment.</p><p><strong>Methods: </strong>Non-randomized comparative study was conducted on 30 patients with primary varicose veins. 20 patients of the study group received diosmin 900 mg/hesperidin 100 mg once daily. 10 controls received no treatment. MCP-1 level was measured (pg/mL) in the blood from varicose veins twice, at the day of inclusion and after 60 days. Legs discomfort related to chronic venous disease (CVD) symptoms was measured with 10-cm Visual Analogue Scale (VAS) at inclusion and at completion of the study.</p><p><strong>Results: </strong>Median (interquartile range, IQR) MCP-1 concentrations in treatment and control groups at inclusion were 171.9 (124.4-216.0) and 157.0 (120.1-163.1), resp., P=0.285. After 60 days of treatment MCP-1 level decreased, but non-significantly to 152.3 (124.1-178.3). In patients who did not receive treatment chemokine level slightly increased to 163.0 (134.0-172.9). Median changes over time were -6.6 (-30.9-7.4) and 10.6 (-3.7-19.2) in the study and control groups, resp. (P=0.048). After 60 days in 12 of 19 and 2 of 9 patients of treatments and control groups MCP-1 decreased (P=0.103). Odds ratio for MCP-1 decreasing was 9.5 (95% CI 1.1-81.5, P=0.043) for those who received venoactive drug. Mean (± standard deviation [SD]) legs discomfort significantly dropped in the study group from 5.7 (±2.5) to 1.9 (±2.2) (P=0.0003), while in controls no changes were registered: 3.4 (±1.3) and 3.5 (± 1.4), resp., P=0.28). Mean difference of VAS at baseline and at follow-up was -3.5 (±2.6) and 0.9 (±2.1), resp. (P<0.0001).</p><p><strong>Conclusions: </strong>Plasma concentration of MCP-1 in varicose veins blood demonstrates a tendency to decrease under two months treatment with a venoactive drug. Future studies are needed to reveal a possible role of MCP-1 as a target considering its role in varicose veins pathogenesis.</p>","PeriodicalId":13709,"journal":{"name":"International Angiology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Angiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S0392-9590.22.04940-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Vein-specific inflammation leads to vascular smooth muscle cells proliferation and extracellular matrix degradation of vein wall. This process is known as remodeling and is promoted by "trapped" leukocytes. Monocyte chemoattractant protein 1 (MCP-1) is a chemokine responsible for trafficking of leukocytes from blood to vein wall. The aim of this study was to measure the MCP-1 concentration in varicose veins blood before and after venoactive drug therapy and to compare it with a concentration of blood from varicose veins of subjects who did not receive drug treatment.
Methods: Non-randomized comparative study was conducted on 30 patients with primary varicose veins. 20 patients of the study group received diosmin 900 mg/hesperidin 100 mg once daily. 10 controls received no treatment. MCP-1 level was measured (pg/mL) in the blood from varicose veins twice, at the day of inclusion and after 60 days. Legs discomfort related to chronic venous disease (CVD) symptoms was measured with 10-cm Visual Analogue Scale (VAS) at inclusion and at completion of the study.
Results: Median (interquartile range, IQR) MCP-1 concentrations in treatment and control groups at inclusion were 171.9 (124.4-216.0) and 157.0 (120.1-163.1), resp., P=0.285. After 60 days of treatment MCP-1 level decreased, but non-significantly to 152.3 (124.1-178.3). In patients who did not receive treatment chemokine level slightly increased to 163.0 (134.0-172.9). Median changes over time were -6.6 (-30.9-7.4) and 10.6 (-3.7-19.2) in the study and control groups, resp. (P=0.048). After 60 days in 12 of 19 and 2 of 9 patients of treatments and control groups MCP-1 decreased (P=0.103). Odds ratio for MCP-1 decreasing was 9.5 (95% CI 1.1-81.5, P=0.043) for those who received venoactive drug. Mean (± standard deviation [SD]) legs discomfort significantly dropped in the study group from 5.7 (±2.5) to 1.9 (±2.2) (P=0.0003), while in controls no changes were registered: 3.4 (±1.3) and 3.5 (± 1.4), resp., P=0.28). Mean difference of VAS at baseline and at follow-up was -3.5 (±2.6) and 0.9 (±2.1), resp. (P<0.0001).
Conclusions: Plasma concentration of MCP-1 in varicose veins blood demonstrates a tendency to decrease under two months treatment with a venoactive drug. Future studies are needed to reveal a possible role of MCP-1 as a target considering its role in varicose veins pathogenesis.
期刊介绍:
International Angiology publishes scientific papers on angiology. Manuscripts may be submitted in the form of editorials, original articles, review articles, special articles, letters to the Editor and guidelines. The journal aims to provide its readers with papers of the highest quality and impact through a process of careful peer review and editorial work. Duties and responsibilities of all the subjects involved in the editorial process are summarized at Publication ethics. Manuscripts are expected to comply with the instructions to authors which conform to the Uniform Requirements for Manuscripts Submitted to Biomedical Editors by the International Committee of Medical Journal Editors (ICMJE).