Description of trunk neural crest migration and peripheral nervous system formation in the Egyptian cobra Naja haje haje

IF 2.2 3区 生物学 Q4 CELL BIOLOGY Differentiation Pub Date : 2023-09-01 DOI:10.1016/j.diff.2023.06.002
Eraqi R. Khannoon , Christian Alvarado , Rafael Poveda , Maria Elena de Bellard
{"title":"Description of trunk neural crest migration and peripheral nervous system formation in the Egyptian cobra Naja haje haje","authors":"Eraqi R. Khannoon ,&nbsp;Christian Alvarado ,&nbsp;Rafael Poveda ,&nbsp;Maria Elena de Bellard","doi":"10.1016/j.diff.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>The neural crest is a stem cell population that forms in the neurectoderm of all vertebrates and gives rise to a diverse set of cells such as sensory neurons, Schwann cells and melanocytes. Neural crest development in snakes is still poorly understood. From the point of view of evolutionary and comparative anatomy is an interesting topic given the unique anatomy of snakes. The aim of the study was to characterize how trunk neural crest cells (TNCC) migrate in the developing elapid snake <em>Naja haje haje</em> and consequently, look at the beginnings of development of neural crest derived sensory ganglia (DRG) and spinal nerves. We found that trunk neural crest and DRG development in <em>Naja haje haje</em> is like what has been described in other vertebrates and the colubrid snake strengthening our knowledge on the conserved mechanisms of neural crest development across species. Here we use the marker HNK1 to follow the migratory behavior of TNCC in the elapid snake <em>Naja haje haje</em> through stages 1–6 (1–9 days postoviposition). We observed that the TNCC of both snake species migrate through the rostral portion of the somite, a pattern also conserved in birds and mammals. The development of cobra peripheral nervous system, using neuronal and glial markers, showed the presence of spectrin in Schwann cell precursors and of axonal plexus along the length of the cobra embryos. In conclusion, cobra embryos show strong conserved patterns in TNCC and PNS development among vertebrates.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000385","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The neural crest is a stem cell population that forms in the neurectoderm of all vertebrates and gives rise to a diverse set of cells such as sensory neurons, Schwann cells and melanocytes. Neural crest development in snakes is still poorly understood. From the point of view of evolutionary and comparative anatomy is an interesting topic given the unique anatomy of snakes. The aim of the study was to characterize how trunk neural crest cells (TNCC) migrate in the developing elapid snake Naja haje haje and consequently, look at the beginnings of development of neural crest derived sensory ganglia (DRG) and spinal nerves. We found that trunk neural crest and DRG development in Naja haje haje is like what has been described in other vertebrates and the colubrid snake strengthening our knowledge on the conserved mechanisms of neural crest development across species. Here we use the marker HNK1 to follow the migratory behavior of TNCC in the elapid snake Naja haje haje through stages 1–6 (1–9 days postoviposition). We observed that the TNCC of both snake species migrate through the rostral portion of the somite, a pattern also conserved in birds and mammals. The development of cobra peripheral nervous system, using neuronal and glial markers, showed the presence of spectrin in Schwann cell precursors and of axonal plexus along the length of the cobra embryos. In conclusion, cobra embryos show strong conserved patterns in TNCC and PNS development among vertebrates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
埃及眼镜蛇Naja haje haje的主干神经嵴迁移和周围神经系统形成描述
神经嵴是一种干细胞群体,在所有脊椎动物的神经直肠皮中形成,并产生一组不同的细胞,如感觉神经元、施旺细胞和黑素细胞。人们对蛇的神经嵴发育仍知之甚少。从进化和比较解剖学的角度来看,鉴于蛇的独特解剖结构,这是一个有趣的话题。本研究的目的是描述干神经嵴细胞(TNCC)如何在发育中的油蛇Naja haje haje中迁移,从而观察神经嵴衍生的感觉神经节(DRG)和脊神经的发育开始。我们发现,Naja haje haje的躯干神经嵴和DRG发育与其他脊椎动物和润滑蛇的描述相似,这加强了我们对跨物种神经嵴发育的保守机制的了解。在这里,我们使用标记HNK1来跟踪TNCC在油蛇Naja haje haje中的迁移行为,直到第1-6阶段(产卵后1-9天)。我们观察到,这两种蛇的TNCC都通过体节的喙部迁移,这种模式在鸟类和哺乳动物中也很常见。使用神经元和神经胶质标记物对眼镜蛇外周神经系统的发育表明,在雪旺细胞前体和沿眼镜蛇胚胎长度的轴丛中存在spectrin。总之,眼镜蛇胚胎在脊椎动物的TNCC和PNS发育中表现出强烈的保守性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
期刊最新文献
AKT from dental epithelium to papilla promotes odontoblast differentiation Effects of a Sertoli cell-specific knockout of Connexin43 on maturation and proliferation of postnatal Sertoli cells Type H vessels in osteogenesis, homeostasis, and related disorders Epithelial-fibroblast interactions in IPF: Lessons from in vitro co-culture studies Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1