Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production.

Nathália Vilela, Geizecler Tomazetto, Thiago Augusto Gonçalves, Victoria Sodré, Gabriela Felix Persinoti, Eduardo Cruz Moraes, Arthur Henrique Cavalcante de Oliveira, Stephanie Nemesio da Silva, Taícia Pacheco Fill, André Damasio, Fabio Marcio Squina
{"title":"Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production.","authors":"Nathália Vilela,&nbsp;Geizecler Tomazetto,&nbsp;Thiago Augusto Gonçalves,&nbsp;Victoria Sodré,&nbsp;Gabriela Felix Persinoti,&nbsp;Eduardo Cruz Moraes,&nbsp;Arthur Henrique Cavalcante de Oliveira,&nbsp;Stephanie Nemesio da Silva,&nbsp;Taícia Pacheco Fill,&nbsp;André Damasio,&nbsp;Fabio Marcio Squina","doi":"10.1186/s13068-022-02251-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds.</p><p><strong>Results: </strong>Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2.</p><p><strong>Conclusions: </strong>The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"16 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830802/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-022-02251-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds.

Results: Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2.

Conclusions: The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木质素分解的河流红孢子虫LM-2的综合组学分析揭示了生物基化学生产的分解代谢途径。
背景:木质素是一种很有吸引力的生产生物基化学品的替代品。它是植物细胞壁的第二大成分,是芳香化合物的丰富天然来源。利用微生物氧化酶降解木质素,将木质素解聚并将芳香族化合物分解为中心代谢中间体,是一种很有前途的木质素降解策略。然而,木质素本身的非均质性和顽固性严重阻碍了其生物催化转化。在这种情况下,研究微生物降解系统可以提供对木质素转化为生物技术相关化合物有用的途径和酶的基本理解。结果:利用多组学方法对一株新型河流红孢子虫LM-2的木质素降解分解代谢进行了表征。该菌株先前从木质素分解微生物联合体中分离出来,并呈现出一组与木质素解聚和芳香族化合物分解代谢有关的酶。此外,还鉴定了河鼠LM-2产生4-乙烯基愈创木酚和香兰素的两条分解代谢途径。结论:首次对该物种进行多组学分析,揭示了木质素降解过程中涉及的一系列基因、转录物和分泌蛋白。本研究扩大了对非常规酵母木质素分解代谢的理解,具有未来遗传操作的潜力。此外,这项工作揭示了木质素增值的关键途径和酶,这些途径和酶可以出口到其他系统,包括模式生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. Correction: Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1