Development of the hippocampal CA2 region and the emergence of social recognition

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2023-06-16 DOI:10.1002/dneu.22919
Emma J. Diethorn, Elizabeth Gould
{"title":"Development of the hippocampal CA2 region and the emergence of social recognition","authors":"Emma J. Diethorn,&nbsp;Elizabeth Gould","doi":"10.1002/dneu.22919","DOIUrl":null,"url":null,"abstract":"<p>Social memories formed in early life, like those for family and unrelated peers, are known to contribute to healthy social interactions throughout life, although how the developing brain supports social memory remains relatively unexplored. The CA2 subregion of the hippocampus is involved in social memory function, but most literature on this subject is restricted to studies of adult rodents. Here, we review the current literature on the embryonic and postnatal development of hippocampal subregion CA2 in mammals, with a focus on the emergence of its unusual molecular and cellular characteristics, including its notably high expression of plasticity-suppressing molecules. We also consider the connectivity of the CA2 with other brain areas, including intrahippocampal regions, such as the dentate gyrus, CA3, and CA1 regions, and extrahippocampal regions, such as the hypothalamus, ventral tegmental area, basal forebrain, raphe nuclei, and the entorhinal cortex. We review developmental milestones of CA2 molecular, cellular, and circuit-level features that may contribute to emerging social recognition abilities for kin and unrelated conspecifics in early life. Lastly, we consider genetic mouse models related to neurodevelopmental disorders in humans in order to survey evidence about whether atypical formation of the CA2 may contribute to social memory dysfunction.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"83 5-6","pages":"143-156"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4f/45/nihms-1915654.PMC10529477.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22919","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Social memories formed in early life, like those for family and unrelated peers, are known to contribute to healthy social interactions throughout life, although how the developing brain supports social memory remains relatively unexplored. The CA2 subregion of the hippocampus is involved in social memory function, but most literature on this subject is restricted to studies of adult rodents. Here, we review the current literature on the embryonic and postnatal development of hippocampal subregion CA2 in mammals, with a focus on the emergence of its unusual molecular and cellular characteristics, including its notably high expression of plasticity-suppressing molecules. We also consider the connectivity of the CA2 with other brain areas, including intrahippocampal regions, such as the dentate gyrus, CA3, and CA1 regions, and extrahippocampal regions, such as the hypothalamus, ventral tegmental area, basal forebrain, raphe nuclei, and the entorhinal cortex. We review developmental milestones of CA2 molecular, cellular, and circuit-level features that may contribute to emerging social recognition abilities for kin and unrelated conspecifics in early life. Lastly, we consider genetic mouse models related to neurodevelopmental disorders in humans in order to survey evidence about whether atypical formation of the CA2 may contribute to social memory dysfunction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海马CA2区的发育和社会认可的出现。
众所周知,早期形成的社交记忆,如家庭和无关同龄人的社交记忆有助于一生中健康的社交互动,尽管发育中的大脑如何支持社交记忆仍相对未知。海马CA2亚区与社会记忆功能有关,但大多数关于这一主题的文献仅限于对成年啮齿动物的研究。在这里,我们回顾了目前关于哺乳动物海马CA2亚区胚胎和出生后发育的文献,重点是其不同寻常的分子和细胞特征的出现,包括其可塑性抑制分子的显著高表达。我们还考虑了CA2与其他大脑区域的连接,包括海马内区域,如齿状回、CA3和CA1区域,以及海马外区域,如下丘脑、腹侧被盖区、基底前脑、中缝核和内嗅皮层。我们回顾了CA2分子、细胞和电路水平特征的发展里程碑,这些特征可能有助于在早期出现亲属和无关同种的社会识别能力。最后,我们考虑了与人类神经发育障碍相关的遗传小鼠模型,以调查CA2的非典型形成是否可能导致社会记忆功能障碍的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Overexpression of Growth Differentiation Factor 15 Reduces Neuronal Cell Damage Induced by Oxygen-Glucose Deprivation/Reoxygenation via Inhibiting Endoplasmic Reticulum Stress-Mediated Ferroptosis. Elevated Serum Homocysteine Levels Impair Embryonic Neurodevelopment by Dysregulating the Heat Shock Proteins. Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents. Novel Transgenic Zebrafish Lines to Study the CHRNA3-B4-A5 Gene Cluster Defective Hippocampal Primary Ciliary Function and Aberrant LKB1/AMPK Signaling Pathway Are Associated With the Inhibition of Autophagic Activity in Offspring Born to Mothers of Advanced Maternal Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1