Recent developments in our understanding of the physiology and nitric oxide-resistance of Staphylococcus aureus.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Advances in Microbial Physiology Pub Date : 2022-01-01 DOI:10.1016/bs.ampbs.2022.06.003
Amelia C Stephens, Anthony R Richardson
{"title":"Recent developments in our understanding of the physiology and nitric oxide-resistance of Staphylococcus aureus.","authors":"Amelia C Stephens,&nbsp;Anthony R Richardson","doi":"10.1016/bs.ampbs.2022.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus is an important human pathogen causing a wide range of disease presentations. It harbors a vast array of virulence factors and drug-resistance determinants. All of these factors are coordinately regulated by a hand full of key transcriptional regulators. The regulation and expression of these factors are tightly intertwined with the metabolic state of the cell. Furthermore, alterations in central metabolism are also key to the ability of S. aureus to resist clearance by the host innate immune response, including nitric oxide (NO·) production. Given the fact that central metabolism directly influences virulence, drug resistance and immune tolerance in S. aureus, a better understanding of the metabolic capabilities of this pathogen is critical. This work highlights some of the major findings within the last five years surrounding S. aureus central metabolism, both organic and inorganic. These are also put in the context of the unique NO·-resistance associated with this pathogen as well as their contributions to virulence. The more we understand the intersection between central metabolism and virulence capabilities in S. aureus, the better the chances of developing novel therapeutics so desperately needed to treat this pathogen.</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":"81 ","pages":"111-135"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2022.06.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

Staphylococcus aureus is an important human pathogen causing a wide range of disease presentations. It harbors a vast array of virulence factors and drug-resistance determinants. All of these factors are coordinately regulated by a hand full of key transcriptional regulators. The regulation and expression of these factors are tightly intertwined with the metabolic state of the cell. Furthermore, alterations in central metabolism are also key to the ability of S. aureus to resist clearance by the host innate immune response, including nitric oxide (NO·) production. Given the fact that central metabolism directly influences virulence, drug resistance and immune tolerance in S. aureus, a better understanding of the metabolic capabilities of this pathogen is critical. This work highlights some of the major findings within the last five years surrounding S. aureus central metabolism, both organic and inorganic. These are also put in the context of the unique NO·-resistance associated with this pathogen as well as their contributions to virulence. The more we understand the intersection between central metabolism and virulence capabilities in S. aureus, the better the chances of developing novel therapeutics so desperately needed to treat this pathogen.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金黄色葡萄球菌的生理和抗一氧化氮能力的最新进展。
金黄色葡萄球菌是一种重要的人类病原体,引起广泛的疾病表现。它含有大量的毒力因子和耐药性决定因素。所有这些因素都是由一大堆关键的转录调节因子协调调节的。这些因子的调控和表达与细胞的代谢状态密切相关。此外,中枢代谢的改变也是金黄色葡萄球菌抵抗宿主先天免疫反应清除能力的关键,包括一氧化氮(NO·)的产生。鉴于中央代谢直接影响金黄色葡萄球菌的毒力、耐药性和免疫耐受,更好地了解这种病原体的代谢能力至关重要。这项工作突出了过去五年围绕金黄色葡萄球菌中心代谢的一些主要发现,包括有机和无机。这些也被放在与这种病原体相关的独特的NO·抗性以及它们对毒性的贡献的背景下。我们对金黄色葡萄球菌的中枢代谢和毒力能力之间的交集了解得越多,开发治疗这种病原体的新疗法的机会就越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Microbial Physiology
Advances in Microbial Physiology 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
16
期刊介绍: Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.
期刊最新文献
Preface. Biological functions of bacterial lysophospholipids. Redefining the bacterial Type I protein secretion system. Purine catabolism by enterobacteria. Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1