{"title":"Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives.","authors":"Xue-Li Liu, Chun-Feng Zhu, Han-Chun Liu, Jia-Ming Zhu","doi":"10.1080/15685551.2022.2054118","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the unique properties such as nontoxicity, biodegradability, availability from renewable resources, and cost-effectiveness, polysaccharides play a very important part in the science and technology field. The various chemically modified derivatives of these offer a wide range of high value-added in both food and non-food industries. Among the chemical modification, etherified polysaccharide is one of the most widespread derivatives by introducing an ether group which is commonly stable in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides ethers derivatives. There also has been a growing tendency for creating new types of modification by combining the different means of chemical techniques. The correct determination of degree of substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to summarize developments in synthetic etherified polysaccharides, involving analytical methods for determination of MS/DS, measurement processes, and the associated mechanisms.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"25 1","pages":"75-88"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2022.2054118","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the unique properties such as nontoxicity, biodegradability, availability from renewable resources, and cost-effectiveness, polysaccharides play a very important part in the science and technology field. The various chemically modified derivatives of these offer a wide range of high value-added in both food and non-food industries. Among the chemical modification, etherified polysaccharide is one of the most widespread derivatives by introducing an ether group which is commonly stable in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides ethers derivatives. There also has been a growing tendency for creating new types of modification by combining the different means of chemical techniques. The correct determination of degree of substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to summarize developments in synthetic etherified polysaccharides, involving analytical methods for determination of MS/DS, measurement processes, and the associated mechanisms.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications