Ratan K Banik, Twan Sia, Mohab M Ibrahim, Eellan Sivanesan, Megan Uhelski, Adrian Pena, John M Streicher, Donald A Simone
{"title":"Increases in local skin temperature correlate with spontaneous foot lifting and heat hyperalgesia in both incisional inflammatory models of pain.","authors":"Ratan K Banik, Twan Sia, Mohab M Ibrahim, Eellan Sivanesan, Megan Uhelski, Adrian Pena, John M Streicher, Donald A Simone","doi":"10.1097/PR9.0000000000001097","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study investigated if a localized increase in skin temperature in rat models of incisional and inflammatory pain correlates with the intensity of spontaneous and evoked pain behaviors.</p><p><strong>Methods: </strong>Anesthetized rats received either a 20-mm longitudinal incision made through the skin, fascia, and muscle of the plantar hind paw or an injection of complete Freund adjuvant into the plantar hind paw of anesthetized rats to induce local inflammation. Spontaneous and evoked pain behaviors were assessed, and changes in skin temperature were measured using a noncontact infrared thermometer.</p><p><strong>Results: </strong>There were no differences in skin temperature between the ipsilateral and contralateral hind paw before the incision or inflammation. Skin temperature increased at 2 hours after hind paw plantar incision or 1 day after inflammation of the affected paw, which gradually returned to baseline by the first day and fourth days after treatment, respectively. The increase in skin temperature correlated with the intensity of spontaneous pain behaviors and heat but not with mechanical allodynia.</p><p><strong>Conclusions: </strong>Our results suggest that a simple measurement of localized skin temperature using a noncontact infrared thermometer could measure the extent of spontaneous pain behaviors and heat hyperalgesia following plantar incision or inflammation in animals. In the absence of a reliable objective marker of pain, these results are encouraging. However, studies are warranted to validate our results using analgesics and pain-relieving interventions, such as nerve block on skin temperature changes.</p>","PeriodicalId":52189,"journal":{"name":"Pain Reports","volume":"8 5","pages":"e1097"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499105/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pain Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/PR9.0000000000001097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Background: This study investigated if a localized increase in skin temperature in rat models of incisional and inflammatory pain correlates with the intensity of spontaneous and evoked pain behaviors.
Methods: Anesthetized rats received either a 20-mm longitudinal incision made through the skin, fascia, and muscle of the plantar hind paw or an injection of complete Freund adjuvant into the plantar hind paw of anesthetized rats to induce local inflammation. Spontaneous and evoked pain behaviors were assessed, and changes in skin temperature were measured using a noncontact infrared thermometer.
Results: There were no differences in skin temperature between the ipsilateral and contralateral hind paw before the incision or inflammation. Skin temperature increased at 2 hours after hind paw plantar incision or 1 day after inflammation of the affected paw, which gradually returned to baseline by the first day and fourth days after treatment, respectively. The increase in skin temperature correlated with the intensity of spontaneous pain behaviors and heat but not with mechanical allodynia.
Conclusions: Our results suggest that a simple measurement of localized skin temperature using a noncontact infrared thermometer could measure the extent of spontaneous pain behaviors and heat hyperalgesia following plantar incision or inflammation in animals. In the absence of a reliable objective marker of pain, these results are encouraging. However, studies are warranted to validate our results using analgesics and pain-relieving interventions, such as nerve block on skin temperature changes.