Threat Memory in the Sensory Cortex: Insights from Olfaction.

IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Neuroscientist Pub Date : 2024-06-01 Epub Date: 2023-01-26 DOI:10.1177/10738584221148994
Wen Li, Donald A Wilson
{"title":"Threat Memory in the Sensory Cortex: Insights from Olfaction.","authors":"Wen Li, Donald A Wilson","doi":"10.1177/10738584221148994","DOIUrl":null,"url":null,"abstract":"<p><p>The amygdala has long held the center seat in the neural basis of threat conditioning. However, a rapidly growing literature has elucidated extra-amygdala circuits in this process, highlighting the sensory cortex for its critical role in the mnemonic aspect of the process. While this literature is largely focused on the auditory system, substantial human and rodent findings on the olfactory system have emerged. The unique nature of the olfactory neuroanatomy and its intimate association with emotion compels a review of this recent literature to illuminate its special contribution to threat memory. Here, integrating recent evidence in humans and animal models, we posit that the olfactory (piriform) cortex is a primary and necessary component of the distributed threat memory network, supporting mnemonic ensemble coding of acquired threat. We further highlight the basic circuit architecture of the piriform cortex characterized by distributed, auto-associative connections, which is prime for highly efficient content-addressable memory computing to support threat memory. Given the primordial role of the piriform cortex in cortical evolution and its simple, well-defined circuits, we propose that olfaction can be a model system for understanding (transmodal) sensory cortical mechanisms underlying threat memory.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"285-293"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584221148994","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The amygdala has long held the center seat in the neural basis of threat conditioning. However, a rapidly growing literature has elucidated extra-amygdala circuits in this process, highlighting the sensory cortex for its critical role in the mnemonic aspect of the process. While this literature is largely focused on the auditory system, substantial human and rodent findings on the olfactory system have emerged. The unique nature of the olfactory neuroanatomy and its intimate association with emotion compels a review of this recent literature to illuminate its special contribution to threat memory. Here, integrating recent evidence in humans and animal models, we posit that the olfactory (piriform) cortex is a primary and necessary component of the distributed threat memory network, supporting mnemonic ensemble coding of acquired threat. We further highlight the basic circuit architecture of the piriform cortex characterized by distributed, auto-associative connections, which is prime for highly efficient content-addressable memory computing to support threat memory. Given the primordial role of the piriform cortex in cortical evolution and its simple, well-defined circuits, we propose that olfaction can be a model system for understanding (transmodal) sensory cortical mechanisms underlying threat memory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
感觉皮层中的威胁记忆:来自嗅觉的启示。
长期以来,杏仁核在威胁条件反射的神经基础中一直占据中心位置。然而,越来越多的文献阐明了这一过程中杏仁核以外的回路,强调了感觉皮层在这一过程的记忆方面所起的关键作用。虽然这些文献主要集中于听觉系统,但也出现了大量关于嗅觉系统的人类和啮齿动物研究成果。由于嗅觉神经解剖学的独特性及其与情感的密切联系,我们不得不对这些最新文献进行回顾,以阐明其对威胁记忆的特殊贡献。在此,我们综合了人类和动物模型的最新证据,认为嗅觉(梨状皮层)是分布式威胁记忆网络的主要和必要组成部分,支持对获得的威胁进行记忆性集合编码。我们进一步强调了以分布式自动关联连接为特征的梨状皮层基本电路结构,它是支持威胁记忆的高效内容可寻址记忆计算的首要条件。鉴于梨状皮层在皮层进化中的原始作用及其简单、定义明确的电路,我们建议将嗅觉作为一个模型系统,用于理解威胁记忆的(跨模态)感觉皮层机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscientist
Neuroscientist 医学-临床神经学
CiteScore
11.50
自引率
0.00%
发文量
68
期刊介绍: Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.
期刊最新文献
A new frontier in the treatment of schizophrenia. Forthcoming Articles. Single-Nuclei Multiomics of the Prefrontal Cortex: 388 Brains Tell a Powerful Story. The Day After. Activity-Dependent Synapse Refinement: From Mechanisms to Molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1