{"title":"Demystifying the Risk Assessment Process for Laboratory-Based Experiments Utilizing Invasive Genetic Elements: It Is More Than Gene Drive.","authors":"Zach N Adelman","doi":"10.1089/apb.20.0074","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in recombinant DNA approaches have resulted in the development of transgene architectures that severely bias their own inheritance, a process commonly referred to as \"gene drive.\" The rapid pace of development, combined with the complexity of many gene drive approaches, threatens to overwhelm those responsible for ensuring its safe use in the laboratory, as even identifying that a specific transgene is capable of gene drive may not be intuitive. Although currently gene drive experiments have been limited to just a few species (mosquitoes, flies, mice, and yeast), the range of organisms used in gene drive research is expected to increase substantially in the coming years. Here the defining features of different gene drive approaches are discussed. Although this will start with a focus on identifying when gene drive could or could not occur, the emphasis will also be on establishing risk profiles based on anticipated level of invasiveness and persistence of transgenes in the surrounding environment. Attention is also called to the fact that transgenes can be considered invasive without being considered gene drive (and vice versa). This further supports the notion that adequate risk assessment requires information regarding the specific circumstances a given transgene or set of transgenes is capable of invading a corresponding population. Finally, challenges in the review and evaluation of work involving gene drive organisms are discussed.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"26 3","pages":"154-163"},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134331/pdf/apb.20.0074.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biosafety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/apb.20.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 1
Abstract
Advances in recombinant DNA approaches have resulted in the development of transgene architectures that severely bias their own inheritance, a process commonly referred to as "gene drive." The rapid pace of development, combined with the complexity of many gene drive approaches, threatens to overwhelm those responsible for ensuring its safe use in the laboratory, as even identifying that a specific transgene is capable of gene drive may not be intuitive. Although currently gene drive experiments have been limited to just a few species (mosquitoes, flies, mice, and yeast), the range of organisms used in gene drive research is expected to increase substantially in the coming years. Here the defining features of different gene drive approaches are discussed. Although this will start with a focus on identifying when gene drive could or could not occur, the emphasis will also be on establishing risk profiles based on anticipated level of invasiveness and persistence of transgenes in the surrounding environment. Attention is also called to the fact that transgenes can be considered invasive without being considered gene drive (and vice versa). This further supports the notion that adequate risk assessment requires information regarding the specific circumstances a given transgene or set of transgenes is capable of invading a corresponding population. Finally, challenges in the review and evaluation of work involving gene drive organisms are discussed.
Applied BiosafetyEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
2.50
自引率
13.30%
发文量
27
期刊介绍:
Applied Biosafety (APB), sponsored by ABSA International, is a peer-reviewed, scientific journal committed to promoting global biosafety awareness and best practices to prevent occupational exposures and adverse environmental impacts related to biohazardous releases. APB provides a forum for exchanging sound biosafety and biosecurity initiatives by publishing original articles, review articles, letters to the editors, commentaries, and brief reviews. APB informs scientists, safety professionals, policymakers, engineers, architects, and governmental organizations. The journal is committed to publishing on topics significant in well-resourced countries as well as information relevant to underserved regions, engaging and cultivating the development of biosafety professionals globally.