{"title":"[Determination of 14 paralytic shellfish toxins in plasma and urine by ultra-high performance liquid chromatography-tandem mass spectrometry].","authors":"Qiang Lin, Chao Yang, Mei-Li Li, Jia Wang, Han-Ran Hou, Bing Shao, Yu-Min Niu","doi":"10.3724/SP.J.1123.2022.05030","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of paralytic shellfish toxins in human biological matrices is important for the diagnosis and treatment of food poisoning caused by them. An ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the determination of 14 paralytic shellfish toxins in plasma and urine. The effect of solid phase extraction (SPE) cartridges was also investigated and the pretreatment and chromatographic conditions were optimized. Under these optimal conditions, 0.2 mL water, 0.4 mL methanol, and 0.6 mL acetonitrile were successively added to plasma and urine samples for extraction. The supernatants from plasma extraction were subjected to an UHPLC-MS/MS analysis, whereas the supernatants from urine extraction were further purified using polyamide (PA) SPE cartridges and then analyzed by UHPLC-MS/MS. Chromatographic separation was conducted on a Poroshell 120 HILIC-Z column (100 mm×2.1 mm, 2.7 μm) with a flow rate of 0.5 mL/min. The mobile phase was 0.1% (v/v) formic acid aqueous solution containing 5 mmoL/L ammonium formate and acetonitrile containing 0.1% (v/v) formic acid. The analytes were detected in the multiple reaction monitoring (MRM) mode after being ionized by an electrospray ion (ESI) in positive and negative modes. Quantitation of the target compounds was performed using the external standard method. Under the optimal conditions, the method showed good linearity in the range of 0.24-84.06 μg/L, with correlation coefficients greater than 0.995. The limits of quantification (LOQs) for the plasma and urine samples were 1.68-12.04 ng/mL and 4.80-34.4 ng/mL, respectively. The average recoveries for all the compounds were 70.4%-123.4% at spiked levels of 1, 2, and 10 times the LOQs, the intra-day precisions were 2.3%-19.1% and the inter-day precisions were 5.0%-16.0%. The established method was used to determine the target compounds in the plasma and urine from mice intraperitoneally injected with 14 shellfish toxins. All 14 toxins were detected in the 20 urine and 20 plasma samples, with contents of 19.40-55.60 μg/L and 8.75-13.86 μg/L, respectively. The method is simple, sensitive, and only requires a small amount of sample. Therefore, it is highly suitable for the rapid detection of paralytic shellfish toxins in plasma and urine.</p>","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 3","pages":"274-280"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"色谱","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2022.05030","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of paralytic shellfish toxins in human biological matrices is important for the diagnosis and treatment of food poisoning caused by them. An ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the determination of 14 paralytic shellfish toxins in plasma and urine. The effect of solid phase extraction (SPE) cartridges was also investigated and the pretreatment and chromatographic conditions were optimized. Under these optimal conditions, 0.2 mL water, 0.4 mL methanol, and 0.6 mL acetonitrile were successively added to plasma and urine samples for extraction. The supernatants from plasma extraction were subjected to an UHPLC-MS/MS analysis, whereas the supernatants from urine extraction were further purified using polyamide (PA) SPE cartridges and then analyzed by UHPLC-MS/MS. Chromatographic separation was conducted on a Poroshell 120 HILIC-Z column (100 mm×2.1 mm, 2.7 μm) with a flow rate of 0.5 mL/min. The mobile phase was 0.1% (v/v) formic acid aqueous solution containing 5 mmoL/L ammonium formate and acetonitrile containing 0.1% (v/v) formic acid. The analytes were detected in the multiple reaction monitoring (MRM) mode after being ionized by an electrospray ion (ESI) in positive and negative modes. Quantitation of the target compounds was performed using the external standard method. Under the optimal conditions, the method showed good linearity in the range of 0.24-84.06 μg/L, with correlation coefficients greater than 0.995. The limits of quantification (LOQs) for the plasma and urine samples were 1.68-12.04 ng/mL and 4.80-34.4 ng/mL, respectively. The average recoveries for all the compounds were 70.4%-123.4% at spiked levels of 1, 2, and 10 times the LOQs, the intra-day precisions were 2.3%-19.1% and the inter-day precisions were 5.0%-16.0%. The established method was used to determine the target compounds in the plasma and urine from mice intraperitoneally injected with 14 shellfish toxins. All 14 toxins were detected in the 20 urine and 20 plasma samples, with contents of 19.40-55.60 μg/L and 8.75-13.86 μg/L, respectively. The method is simple, sensitive, and only requires a small amount of sample. Therefore, it is highly suitable for the rapid detection of paralytic shellfish toxins in plasma and urine.
期刊介绍:
"Chinese Journal of Chromatography" mainly reports the basic research results of chromatography, important application results of chromatography and its interdisciplinary subjects and their progress, including the application of new methods, new technologies, and new instruments in various fields, the research and development of chromatography instruments and components, instrument analysis teaching research, etc. It is suitable for researchers engaged in chromatography basic and application technology research in scientific research institutes, master and doctoral students in chromatography and related disciplines, grassroots researchers in the field of analysis and testing, and relevant personnel in chromatography instrument development and operation units.
The journal has columns such as special planning, focus, perspective, research express, research paper, monograph and review, micro review, technology and application, and teaching research.