Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2023-01-24 DOI:10.1186/s13040-023-00319-z
Peter Appiahene, Justice Williams Asare, Emmanuel Timmy Donkoh, Giovanni Dimauro, Rosalia Maglietta
{"title":"Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms.","authors":"Peter Appiahene,&nbsp;Justice Williams Asare,&nbsp;Emmanuel Timmy Donkoh,&nbsp;Giovanni Dimauro,&nbsp;Rosalia Maglietta","doi":"10.1186/s13040-023-00319-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anemia is one of the global public health problems that affect children and pregnant women. Anemia occurs when the level of red blood cells within the body decreases or when the structure of the red blood cells is destroyed or when the Hb level in the red blood cell is below the normal threshold, which results from one or more increased red cell destructions, blood loss, defective cell production or a depleted sum of Red Blood Cells.</p><p><strong>Methods: </strong>The method used in this study is divided into three phases: the datasets were gathered, which is the palm, pre-processed the image, which comprised; Extracted images, and augmented images, segmented the Region of Interest of the images and acquired their various components of the CIE L*a*b* colour space (also referred to as the CIELAB), and finally developed the proposed models for the detection of anemia using the various algorithms, which include CNN, k-NN, Nave Bayes, SVM, and Decision Tree. The experiment utilized 527 initial datasets, rotation, flipping and translation were utilized and augmented the dataset to 2635. We randomly divided the augmented dataset into 70%, 10%, and 20% and trained, validated and tested the models respectively.</p><p><strong>Results: </strong>The results of the study justify that the models performed appropriately when the palm is used to detect anemia, with the Naïve Bayes achieving a 99.96% accuracy while the SVM achieved the lowest accuracy of 96.34%, as the CNN also performed better with an accuracy of 99.92% in detecting anemia.</p><p><strong>Conclusions: </strong>The invasive method of detecting anemia is expensive and time-consuming; however, anemia can be detected through the use of non-invasive methods such as machine learning algorithms which is efficient, cost-effective and takes less time. In this work, we compared machine learning models such as CNN, k-NN, Decision Tree, Naïve Bayes, and SVM to detect anemia using images of the palm. Finally, the study supports other similar studies on the potency of the Machine Learning Algorithm as a non-invasive method in detecting iron deficiency anemia.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875467/pdf/","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-023-00319-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 11

Abstract

Background: Anemia is one of the global public health problems that affect children and pregnant women. Anemia occurs when the level of red blood cells within the body decreases or when the structure of the red blood cells is destroyed or when the Hb level in the red blood cell is below the normal threshold, which results from one or more increased red cell destructions, blood loss, defective cell production or a depleted sum of Red Blood Cells.

Methods: The method used in this study is divided into three phases: the datasets were gathered, which is the palm, pre-processed the image, which comprised; Extracted images, and augmented images, segmented the Region of Interest of the images and acquired their various components of the CIE L*a*b* colour space (also referred to as the CIELAB), and finally developed the proposed models for the detection of anemia using the various algorithms, which include CNN, k-NN, Nave Bayes, SVM, and Decision Tree. The experiment utilized 527 initial datasets, rotation, flipping and translation were utilized and augmented the dataset to 2635. We randomly divided the augmented dataset into 70%, 10%, and 20% and trained, validated and tested the models respectively.

Results: The results of the study justify that the models performed appropriately when the palm is used to detect anemia, with the Naïve Bayes achieving a 99.96% accuracy while the SVM achieved the lowest accuracy of 96.34%, as the CNN also performed better with an accuracy of 99.92% in detecting anemia.

Conclusions: The invasive method of detecting anemia is expensive and time-consuming; however, anemia can be detected through the use of non-invasive methods such as machine learning algorithms which is efficient, cost-effective and takes less time. In this work, we compared machine learning models such as CNN, k-NN, Decision Tree, Naïve Bayes, and SVM to detect anemia using images of the palm. Finally, the study supports other similar studies on the potency of the Machine Learning Algorithm as a non-invasive method in detecting iron deficiency anemia.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学图像检测缺铁性贫血:机器学习算法的比较研究。
背景:贫血是影响儿童和孕妇的全球性公共卫生问题之一。当体内红细胞水平下降或红细胞结构被破坏或红细胞中的Hb水平低于正常阈值时,就会发生贫血,这是由一种或多种红细胞破坏增加、失血、细胞产生缺陷或红细胞耗尽引起的。方法:本研究采用的方法分为三个阶段:收集数据集,即手掌,对图像进行预处理,其中包括;提取图像,增强图像,对图像的兴趣区域进行分割,并获得其在CIEL *a*b*色彩空间(也称为CIELAB)中的各个分量,最后使用各种算法(包括CNN, k-NN, Nave Bayes, SVM和Decision Tree)开发提出的贫血检测模型。实验利用527个初始数据集,利用旋转、翻转、平移等方法将数据集扩充到2635个。我们将增强的数据集随机分为70%、10%和20%,并分别对模型进行训练、验证和测试。结果:本研究结果证明了模型在用手掌检测贫血时的表现是合适的,Naïve Bayes的准确率达到99.96%,SVM的准确率最低,为96.34%,CNN在检测贫血方面的准确率也更好,达到99.92%。结论:有创检测贫血费用高、耗时长;然而,可以通过使用机器学习算法等非侵入性方法检测贫血,这种方法效率高,成本效益高,耗时短。在这项工作中,我们比较了机器学习模型,如CNN, k-NN,决策树,Naïve贝叶斯和SVM,以使用手掌图像检测贫血。最后,该研究支持了机器学习算法作为检测缺铁性贫血的非侵入性方法的效力的其他类似研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
Deep joint learning diagnosis of Alzheimer's disease based on multimodal feature fusion. Modeling heterogeneity of Sudanese hospital stay in neonatal and maternal unit: non-parametric random effect models with Gamma distribution. Ensemble feature selection and tabular data augmentation with generative adversarial networks to enhance cutaneous melanoma identification and interpretability. Priority-Elastic net for binary disease outcome prediction based on multi-omics data. A regularized Cox hierarchical model for incorporating annotation information in predictive omic studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1