GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms.

IF 2.8 4区 医学 Q2 NEUROSCIENCES Frontiers in Synaptic Neuroscience Pub Date : 2022-01-01 DOI:10.3389/fnsyn.2022.1090865
Shasta L Sabo, Jessica M Lahr, Madelyn Offer, Anika LA Weekes, Michael P Sceniak
{"title":"<i>GRIN2B</i>-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms.","authors":"Shasta L Sabo,&nbsp;Jessica M Lahr,&nbsp;Madelyn Offer,&nbsp;Anika LA Weekes,&nbsp;Michael P Sceniak","doi":"10.3389/fnsyn.2022.1090865","DOIUrl":null,"url":null,"abstract":"<p><p><i>The GRIN2B</i>-related neurodevelopmental disorder is a rare disease caused by mutations in the <i>GRIN2B</i> gene, which encodes the GluN2B subunit of NMDA receptors. Most individuals with <i>GRIN2B</i>-related neurodevelopmental disorder present with intellectual disability and developmental delay. Motor impairments, autism spectrum disorder, and epilepsy are also common. A large number of pathogenic <i>de novo</i> mutations have been identified in <i>GRIN2B</i>. However, it is not yet known how these variants lead to the clinical symptoms of the disease. Recent research has begun to address this issue. Here, we describe key experimental approaches that have been used to better understand the pathophysiology of this disease. We discuss the impact of several distinct pathogenic <i>GRIN2B</i> variants on NMDA receptor properties. We then critically review pivotal studies examining the synaptic and neurodevelopmental phenotypes observed when disease-associated GluN2B variants are expressed in neurons. These data provide compelling evidence that various GluN2B mutants interfere with neuronal differentiation, dendrite morphogenesis, synaptogenesis, and synaptic plasticity. Finally, we identify important open questions and considerations for future studies aimed at understanding this complex disease. Together, the existing data provide insight into the pathophysiological mechanisms that underlie <i>GRIN2B</i>-related neurodevelopmental disorder and emphasize the importance of comparing the effects of individual, disease-associated variants. Understanding the molecular, cellular and circuit phenotypes produced by a wide range of <i>GRIN2B</i> variants should lead to the identification of core neurodevelopmental phenotypes that characterize the disease and lead to its symptoms. This information could help guide the development and application of effective therapeutic strategies for treating individuals with <i>GRIN2B</i>-related neurodevelopmental disorder.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"14 ","pages":"1090865"},"PeriodicalIF":2.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873235/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Synaptic Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsyn.2022.1090865","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 7

Abstract

The GRIN2B-related neurodevelopmental disorder is a rare disease caused by mutations in the GRIN2B gene, which encodes the GluN2B subunit of NMDA receptors. Most individuals with GRIN2B-related neurodevelopmental disorder present with intellectual disability and developmental delay. Motor impairments, autism spectrum disorder, and epilepsy are also common. A large number of pathogenic de novo mutations have been identified in GRIN2B. However, it is not yet known how these variants lead to the clinical symptoms of the disease. Recent research has begun to address this issue. Here, we describe key experimental approaches that have been used to better understand the pathophysiology of this disease. We discuss the impact of several distinct pathogenic GRIN2B variants on NMDA receptor properties. We then critically review pivotal studies examining the synaptic and neurodevelopmental phenotypes observed when disease-associated GluN2B variants are expressed in neurons. These data provide compelling evidence that various GluN2B mutants interfere with neuronal differentiation, dendrite morphogenesis, synaptogenesis, and synaptic plasticity. Finally, we identify important open questions and considerations for future studies aimed at understanding this complex disease. Together, the existing data provide insight into the pathophysiological mechanisms that underlie GRIN2B-related neurodevelopmental disorder and emphasize the importance of comparing the effects of individual, disease-associated variants. Understanding the molecular, cellular and circuit phenotypes produced by a wide range of GRIN2B variants should lead to the identification of core neurodevelopmental phenotypes that characterize the disease and lead to its symptoms. This information could help guide the development and application of effective therapeutic strategies for treating individuals with GRIN2B-related neurodevelopmental disorder.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与grin2b相关的神经发育障碍:目前对病理生理机制的理解。
GRIN2B相关的神经发育障碍是一种由编码NMDA受体GluN2B亚基的GRIN2B基因突变引起的罕见疾病。大多数与grin2b相关的神经发育障碍患者存在智力障碍和发育迟缓。运动障碍、自闭症谱系障碍和癫痫也很常见。在GRIN2B中已经发现了大量的致病性新生突变。然而,目前尚不清楚这些变异如何导致该疾病的临床症状。最近的研究已经开始解决这个问题。在这里,我们描述了已经用于更好地了解这种疾病的病理生理的关键实验方法。我们讨论了几种不同的致病性GRIN2B变异对NMDA受体特性的影响。然后,我们批判性地回顾了检查突触和神经发育表型的关键研究,当疾病相关的GluN2B变异在神经元中表达时观察到。这些数据提供了令人信服的证据,证明各种GluN2B突变体干扰神经元分化、树突形态发生、突触发生和突触可塑性。最后,我们确定了重要的开放性问题和未来研究的考虑,旨在了解这种复杂的疾病。总之,现有的数据提供了对grin2b相关神经发育障碍的病理生理机制的深入了解,并强调了比较个体疾病相关变异影响的重要性。了解由广泛的GRIN2B变异产生的分子、细胞和电路表型,将有助于识别表征该疾病并导致其症状的核心神经发育表型。这些信息可以帮助指导开发和应用有效的治疗策略来治疗与grin2b相关的神经发育障碍个体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
2.70%
发文量
74
审稿时长
14 weeks
期刊最新文献
Editorial: Role of protein palmitoylation in synaptic plasticity and neuronal differentiation, volume II. The short-term plasticity of VIP interneurons in motor cortex. Editorial: Regulation of AMPA receptors in brain diseases, from the genetic to the functional level, volume II. The Wingless planar cell polarity pathway is essential for optimal activity-dependent synaptic plasticity. Synaptic plasticity through a naturalistic lens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1