New advances in pharmaceutical strategies for sensitizing anti-PD-1 immunotherapy and clinical research.

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2023-01-01 DOI:10.1002/wnan.1837
Mengshi Jiang, Bing Qin, Xiang Li, Yu Liu, Guannan Guan, Jian You
{"title":"New advances in pharmaceutical strategies for sensitizing anti-PD-1 immunotherapy and clinical research.","authors":"Mengshi Jiang,&nbsp;Bing Qin,&nbsp;Xiang Li,&nbsp;Yu Liu,&nbsp;Guannan Guan,&nbsp;Jian You","doi":"10.1002/wnan.1837","DOIUrl":null,"url":null,"abstract":"<p><p>Attempts have been made continuously to use nano-drug delivery system (NDDS) to improve the effect of antitumor therapy. In recent years, especially in the application of immunotherapy represented by antiprogrammed death receptor 1 (anti-PD-1), it has been vigorously developed. Nanodelivery systems are significantly superior in a number of aspects including increasing the solubility of insoluble drugs, enhancing their targeting ability, prolonging their half-life, and reducing side effects. It can not only directly improve the efficacy of anti-PD-1 immunotherapy, but also indirectly enhance the antineoplastic efficacy of immunotherapy by boosting the effectiveness of therapeutic modalities such as chemotherapy, radiotherapy, photothermal, and photodynamic therapy (PTT/PDT). Here, we summarize the studies published in recent years on the use of nanotechnology in pharmaceutics to improve the efficacy of anti-PD-1 antibodies, analyze their characteristics and shortcomings, and combine with the current clinical research on anti-PD-1 antibodies to provide a reference for the design of future nanocarriers, so as to further expand the clinical application prospects of NDDSs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 1","pages":"e1837"},"PeriodicalIF":6.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1837","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

Attempts have been made continuously to use nano-drug delivery system (NDDS) to improve the effect of antitumor therapy. In recent years, especially in the application of immunotherapy represented by antiprogrammed death receptor 1 (anti-PD-1), it has been vigorously developed. Nanodelivery systems are significantly superior in a number of aspects including increasing the solubility of insoluble drugs, enhancing their targeting ability, prolonging their half-life, and reducing side effects. It can not only directly improve the efficacy of anti-PD-1 immunotherapy, but also indirectly enhance the antineoplastic efficacy of immunotherapy by boosting the effectiveness of therapeutic modalities such as chemotherapy, radiotherapy, photothermal, and photodynamic therapy (PTT/PDT). Here, we summarize the studies published in recent years on the use of nanotechnology in pharmaceutics to improve the efficacy of anti-PD-1 antibodies, analyze their characteristics and shortcomings, and combine with the current clinical research on anti-PD-1 antibodies to provide a reference for the design of future nanocarriers, so as to further expand the clinical application prospects of NDDSs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
致敏抗pd -1免疫治疗药物策略及临床研究新进展。
人们不断尝试利用纳米给药系统(NDDS)来提高抗肿瘤治疗的效果。近年来,特别是以抗程序性死亡受体1 (anti- programmed death receptor 1, anti-PD-1)为代表的免疫治疗应用得到了大力发展。纳米递送系统在许多方面都具有显著的优势,包括增加不溶性药物的溶解度,增强其靶向能力,延长其半衰期,减少副作用。它不仅可以直接提高抗pd -1免疫治疗的疗效,还可以通过提高化疗、放疗、光热、光动力治疗(PTT/PDT)等治疗方式的有效性,间接增强免疫治疗的抗肿瘤疗效。在此,我们总结近年来发表的利用纳米技术在制药领域提高抗pd -1抗体疗效的研究,分析其特点和不足,并结合目前抗pd -1抗体的临床研究,为未来纳米载体的设计提供参考,从而进一步拓展ndds的临床应用前景。本文分类如下:治疗方法和药物发现>肿瘤疾病的纳米医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
期刊最新文献
Design and synthesis of bioinspired nanomaterials for biomedical application. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling "detect to treat" opportunities. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1