{"title":"Phase separation in controlling meiotic chromosome dynamics.","authors":"Ruirui Zhang, Yuanyuan Liu, Jinmin Gao","doi":"10.1016/bs.ctdb.2022.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>Sexually reproducing organisms produce haploid gametes through meiotic cell division, during which a single round of DNA replication is followed by two consecutive chromosome segregation. A series of meiosis-specific events take place during the meiotic prophase to ensure successful chromosome segregation. These events include programmed DNA double-strand break formation, chromosome movement driven by cytoplasmic forces, homologous pairing, synaptonemal complex installation, and inter-homolog crossover formation. Phase separation has emerged as a key principle controlling cellular biomolecular material organization and biological processes. Recent studies have revealed the involvements of phase separation in assembling meiotic chromosome-associated structures. Here we review and discuss how phase separation may participate in meiotic chromosome dynamics and propose that it may provide opportunities to understand the mysteries in meiotic regulations.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"151 ","pages":"69-90"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2022.04.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Sexually reproducing organisms produce haploid gametes through meiotic cell division, during which a single round of DNA replication is followed by two consecutive chromosome segregation. A series of meiosis-specific events take place during the meiotic prophase to ensure successful chromosome segregation. These events include programmed DNA double-strand break formation, chromosome movement driven by cytoplasmic forces, homologous pairing, synaptonemal complex installation, and inter-homolog crossover formation. Phase separation has emerged as a key principle controlling cellular biomolecular material organization and biological processes. Recent studies have revealed the involvements of phase separation in assembling meiotic chromosome-associated structures. Here we review and discuss how phase separation may participate in meiotic chromosome dynamics and propose that it may provide opportunities to understand the mysteries in meiotic regulations.
有性生殖的生物通过减数分裂产生单倍体配子,在减数分裂过程中,单轮DNA复制后进行两次连续的染色体分离。减数分裂前期会发生一系列减数分裂特异事件,以确保染色体成功分离。这些事件包括程序性 DNA 双链断裂的形成、由细胞质力驱动的染色体移动、同源配对、突触复合体的安装以及同源体间交叉的形成。相分离已成为控制细胞生物分子物质组织和生物过程的关键原理。最近的研究发现,相分离参与了减数分裂染色体相关结构的组装。在此,我们回顾并讨论了相分离如何参与减数分裂染色体动力学,并提出相分离可能为理解减数分裂调控的奥秘提供机会。