Cyclin-dependent kinases: Masters of the eukaryotic universe.

IF 6.4 2区 生物学 Q1 CELL BIOLOGY Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-09-17 DOI:10.1002/wrna.1816
Aleksandra J Pluta, Cécilia Studniarek, Shona Murphy, Chris J Norbury
{"title":"Cyclin-dependent kinases: Masters of the eukaryotic universe.","authors":"Aleksandra J Pluta, Cécilia Studniarek, Shona Murphy, Chris J Norbury","doi":"10.1002/wrna.1816","DOIUrl":null,"url":null,"abstract":"<p><p>A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several \"cell-cycle\" CDKs having important roles in transcription and some \"transcriptional\" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1816"},"PeriodicalIF":6.4000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.1816","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
依赖细胞周期蛋白的激酶:真核生物宇宙的主宰者
结构相关的细胞周期蛋白依赖性蛋白激酶(CDKs)家族驱动着真核细胞功能的许多方面。该领域的许多文献都认为该家族的各个成员主要是作为细胞周期的调节者(CDKs 最初就是在这种情况下被发现的)或转录的调节者发挥作用。直到最近,CDK7 仍是 CDK 在这两个过程中发挥作用的唯一明确例子。然而,新的数据表明,一些 "细胞周期 "CDK 在转录中发挥着重要作用,一些 "转录 "CDK 具有与细胞周期相关的靶标。例如,典型的细胞周期调节因子 CDK1 在转录中的新功能已被证实。越来越多的证据表明,这两种 CDK 类型之间存在重叠,这表明它们可能在协调这两个过程中发挥着关键作用。在此,我们回顾了细胞周期和转录 CDK 的典型功能,并提供了这些激酶如何协同执行重要细胞功能的最新信息。我们还简要概述了 CDKs 失调如何导致癌变以及可能的治疗途径。本文归类于RNA 与蛋白质和其他分子的相互作用 > RNA 蛋白复合物 RNA 处理 > 3' 端处理 RNA 处理 > 剪接调节/替代剪接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
期刊最新文献
Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1