Michelle Kha, Krzysztof Krawczyk, Oi Kuan Choong, Francesco De Luca, Gülay Altiparmak, Eva Källberg, Helén Nilsson, Karin Leandersson, Karl Swärd, Martin E Johansson
{"title":"The injury-induced transcription factor SOX9 alters the expression of <i>LBR</i>, <i>HMGA2</i>, and <i>HIPK3</i> in the human kidney.","authors":"Michelle Kha, Krzysztof Krawczyk, Oi Kuan Choong, Francesco De Luca, Gülay Altiparmak, Eva Källberg, Helén Nilsson, Karin Leandersson, Karl Swärd, Martin E Johansson","doi":"10.1152/ajprenal.00196.2022","DOIUrl":null,"url":null,"abstract":"<p><p>Induction of SRY box transcription factor 9 (SOX9) has been shown to occur in response to kidney injury in rodents, where SOX9-positive cells proliferate and regenerate the proximal tubules of injured kidneys. Additionally, SOX9-positive cells demonstrate a capacity to differentiate toward other nephron segments. Here, we characterized the role of SOX9 in normal and injured human kidneys. SOX9 expression was found to colocalize with a proportion of so-called scattered tubular cells in the uninjured kidney, a cell population previously shown to be involved in kidney injury and regeneration. Following injury and in areas adjacent to inflammatory cell infiltrates, SOX9-positive cells were increased in number. With the use of primary tubular epithelial cells (PTECs) obtained from human kidney tissue, SOX9 expression was spontaneously induced in culture and further increased by transforming growth factor-β1, whereas it was suppressed by interferon-γ. siRNA-mediated knockdown of SOX9 in PTECs followed by analysis of differential gene expression, immunohistochemical expression, and luciferase promoter assays suggested lamin B receptor (<i>LBR</i>), high mobility group AT-hook 2 (<i>HMGA2</i>), and homeodomain interacting protein kinase 3 (<i>HIPK3</i>) as possible target genes of SOX9. Moreover, a kidney explant model was used to demonstrate that only SOX9-positive cells survive the massive injury associated with kidney ischemia and that the surviving SOX9-positive cells spread and repopulate the tubules. Using a wound healing assay, we also showed that SOX9 positively regulated the migratory capacity of PTECs. These findings shed light on the functional and regulatory aspects of SOX9 activation in the human kidney during injury and regeneration.<b>NEW & NOTEWORTHY</b> Recent studies using murine models have shown that SRY box transcription factor 9 (SOX9) is activated during repair of renal tubular cells. In this study, we showed that SOX9-positive cells represent a proportion of scattered tubular cells found in the uninjured human kidney. Furthermore, we suggest that expression of <i>LBR</i>, <i>HMGA2</i>, and <i>HIPK3</i> is altered by SOX9 in the kidney tubular epithelium, suggesting the involvement of these gene products in kidney injury and regeneration.</p>","PeriodicalId":7588,"journal":{"name":"American Journal of Physiology-renal Physiology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology-renal Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajprenal.00196.2022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Induction of SRY box transcription factor 9 (SOX9) has been shown to occur in response to kidney injury in rodents, where SOX9-positive cells proliferate and regenerate the proximal tubules of injured kidneys. Additionally, SOX9-positive cells demonstrate a capacity to differentiate toward other nephron segments. Here, we characterized the role of SOX9 in normal and injured human kidneys. SOX9 expression was found to colocalize with a proportion of so-called scattered tubular cells in the uninjured kidney, a cell population previously shown to be involved in kidney injury and regeneration. Following injury and in areas adjacent to inflammatory cell infiltrates, SOX9-positive cells were increased in number. With the use of primary tubular epithelial cells (PTECs) obtained from human kidney tissue, SOX9 expression was spontaneously induced in culture and further increased by transforming growth factor-β1, whereas it was suppressed by interferon-γ. siRNA-mediated knockdown of SOX9 in PTECs followed by analysis of differential gene expression, immunohistochemical expression, and luciferase promoter assays suggested lamin B receptor (LBR), high mobility group AT-hook 2 (HMGA2), and homeodomain interacting protein kinase 3 (HIPK3) as possible target genes of SOX9. Moreover, a kidney explant model was used to demonstrate that only SOX9-positive cells survive the massive injury associated with kidney ischemia and that the surviving SOX9-positive cells spread and repopulate the tubules. Using a wound healing assay, we also showed that SOX9 positively regulated the migratory capacity of PTECs. These findings shed light on the functional and regulatory aspects of SOX9 activation in the human kidney during injury and regeneration.NEW & NOTEWORTHY Recent studies using murine models have shown that SRY box transcription factor 9 (SOX9) is activated during repair of renal tubular cells. In this study, we showed that SOX9-positive cells represent a proportion of scattered tubular cells found in the uninjured human kidney. Furthermore, we suggest that expression of LBR, HMGA2, and HIPK3 is altered by SOX9 in the kidney tubular epithelium, suggesting the involvement of these gene products in kidney injury and regeneration.
期刊介绍:
The American Journal of Physiology - Renal Physiology publishes original manuscripts on timely topics in both basic science and clinical research. Published articles address a broad range of subjects relating to the kidney and urinary tract, and may involve human or animal models, individual cell types, and isolated membrane systems. Also covered are the pathophysiological basis of renal disease processes, regulation of body fluids, and clinical research that provides mechanistic insights. Studies of renal function may be conducted using a wide range of approaches, such as biochemistry, immunology, genetics, mathematical modeling, molecular biology, as well as physiological and clinical methodologies.