Grace A Casselberry, Joseph C Drake, Nicole Perlot, Steven J Cooke, Andy J Danylchuk, Robert J Lennox
{"title":"Allometric Scaling of Anaerobic Capacity Estimated from a Unique Field-Based Data Set of Fish Swimming.","authors":"Grace A Casselberry, Joseph C Drake, Nicole Perlot, Steven J Cooke, Andy J Danylchuk, Robert J Lennox","doi":"10.1086/722134","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractLocomotion is a defining characteristic that can dictate many aspects of an organism's life history in the pursuit of maximizing fitness, including escaping predators, capturing prey, and transitioning between habitats. Exhaustive exercise can have negative consequences for both short-term and long-term energetics and life history trade-offs, influencing fish survival and reproduction. Studies of swimming performance and exhaustive exercise in fish are often conducted on individual species, but few multispecies analyses exist and even fewer in field settings. In fish, swimming performance and exercise have historically been studied in the laboratory using swim tunnels, but an increasing body of work in recreational fisheries science provides a novel way to examine swimming capacity and exhaustion. Using fight time, the time it takes for a hooked fish to be landed on rod and reel fishing gear, as an opportunistic proxy for fish exhaustion, a multispecies meta-analysis of data from studies on recreational fisheries was conducted to elucidate the factors that most influence capacity for exhaustive exercise. Data from 39 species of freshwater and marine fish were aggregated, and negative binomial mixed effects models as well as phylogenetic least squares regression were used to identify the factors that most influenced exhaustive exercise in the field. Fish total length, aspect ratio of the caudal fin, and body form were significant factors in explaining the capacity for exhaustive exercise. Large migratory fish with high aspect ratios were able to fight, and therefore exercise, the longest. These results illustrate that body form and physiology are both deeply intertwined to inform function across fish species and point to angling fight time as a useful approximation of fish swimming capabilities that can be further developed for understanding the limits of fish exercise physiology.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"96 1","pages":"17-29"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/722134","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractLocomotion is a defining characteristic that can dictate many aspects of an organism's life history in the pursuit of maximizing fitness, including escaping predators, capturing prey, and transitioning between habitats. Exhaustive exercise can have negative consequences for both short-term and long-term energetics and life history trade-offs, influencing fish survival and reproduction. Studies of swimming performance and exhaustive exercise in fish are often conducted on individual species, but few multispecies analyses exist and even fewer in field settings. In fish, swimming performance and exercise have historically been studied in the laboratory using swim tunnels, but an increasing body of work in recreational fisheries science provides a novel way to examine swimming capacity and exhaustion. Using fight time, the time it takes for a hooked fish to be landed on rod and reel fishing gear, as an opportunistic proxy for fish exhaustion, a multispecies meta-analysis of data from studies on recreational fisheries was conducted to elucidate the factors that most influence capacity for exhaustive exercise. Data from 39 species of freshwater and marine fish were aggregated, and negative binomial mixed effects models as well as phylogenetic least squares regression were used to identify the factors that most influenced exhaustive exercise in the field. Fish total length, aspect ratio of the caudal fin, and body form were significant factors in explaining the capacity for exhaustive exercise. Large migratory fish with high aspect ratios were able to fight, and therefore exercise, the longest. These results illustrate that body form and physiology are both deeply intertwined to inform function across fish species and point to angling fight time as a useful approximation of fish swimming capabilities that can be further developed for understanding the limits of fish exercise physiology.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.