{"title":"Effect of Fluoxetine on the Surface Behavior of the Lipid Monolayers at Different Surface Pressures.","authors":"Bin Xie, Shumin Yang","doi":"10.1007/s00232-022-00249-7","DOIUrl":null,"url":null,"abstract":"<p><p>Fluoxetine (FLX), used in the clinic to treat depression, is a well-known cationic amphiphilic antidepressant. However, there is a lack of research on the effect of FLX on the surface behavior of lipid monolayers under different surface pressures. In this study, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/CHOL (DPPC/POPC/CHOL) monolayers were prepared via the Langmuir method, and FLX was added to these monolayers under various surface pressures. The effect of FLX on the surface behavior of DPPC/POPC/CHOL monolayers under various surface pressures was studied using a combination of surface pressure-area isotherms, compressibility modulus-surface pressure curves, and atomic force microscope (AFM). The results showed that the effect of FLX on the lipid monolayers was different under different surface pressures. The interaction between FLX and lipid molecules was weak under low surface pressures, and FLX could easily intercalate between the lipid molecules to inhibit monolayer phase transition. The interaction between FLX and lipid molecules was enhanced and FLX tended to self-aggregate to reduce the monolayer stability when the surface pressure was high. This study lays the foundation for further studies on the interaction between FLX and lipid monolayers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-022-00249-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Fluoxetine (FLX), used in the clinic to treat depression, is a well-known cationic amphiphilic antidepressant. However, there is a lack of research on the effect of FLX on the surface behavior of lipid monolayers under different surface pressures. In this study, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/CHOL (DPPC/POPC/CHOL) monolayers were prepared via the Langmuir method, and FLX was added to these monolayers under various surface pressures. The effect of FLX on the surface behavior of DPPC/POPC/CHOL monolayers under various surface pressures was studied using a combination of surface pressure-area isotherms, compressibility modulus-surface pressure curves, and atomic force microscope (AFM). The results showed that the effect of FLX on the lipid monolayers was different under different surface pressures. The interaction between FLX and lipid molecules was weak under low surface pressures, and FLX could easily intercalate between the lipid molecules to inhibit monolayer phase transition. The interaction between FLX and lipid molecules was enhanced and FLX tended to self-aggregate to reduce the monolayer stability when the surface pressure was high. This study lays the foundation for further studies on the interaction between FLX and lipid monolayers.