Extracting information and inferences from a large text corpus.

Sandhya Avasthi, Ritu Chauhan, Debi Prasanna Acharjya
{"title":"Extracting information and inferences from a large text corpus.","authors":"Sandhya Avasthi,&nbsp;Ritu Chauhan,&nbsp;Debi Prasanna Acharjya","doi":"10.1007/s41870-022-01123-4","DOIUrl":null,"url":null,"abstract":"<p><p>The usage of various software applications has grown tremendously due to the onset of Industry 4.0, giving rise to the accumulation of all forms of data. The scientific, biological, and social media text collections demand efficient machine learning methods for data interpretability, which organizations need in decision-making of all sorts. The topic models can be applied in text mining of biomedical articles, scientific articles, Twitter data, and blog posts. This paper analyzes and provides a comparison of the performance of Latent Dirichlet Allocation (LDA), Dynamic Topic Model (DTM), and Embedded Topic Model (ETM) techniques. An incremental topic model with word embedding (ITMWE) is proposed that processes large text data in an incremental environment and extracts latent topics that best describe the document collections. Experiments in both offline and online settings on large real-world document collections such as CORD-19, NIPS papers, and Tweet datasets show that, while LDA and DTM is a good model for discovering word-level topics, ITMWE discovers better document-level topic groups more efficiently in a dynamic environment, which is crucial in text mining applications.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":"15 1","pages":"435-445"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676895/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-022-01123-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The usage of various software applications has grown tremendously due to the onset of Industry 4.0, giving rise to the accumulation of all forms of data. The scientific, biological, and social media text collections demand efficient machine learning methods for data interpretability, which organizations need in decision-making of all sorts. The topic models can be applied in text mining of biomedical articles, scientific articles, Twitter data, and blog posts. This paper analyzes and provides a comparison of the performance of Latent Dirichlet Allocation (LDA), Dynamic Topic Model (DTM), and Embedded Topic Model (ETM) techniques. An incremental topic model with word embedding (ITMWE) is proposed that processes large text data in an incremental environment and extracts latent topics that best describe the document collections. Experiments in both offline and online settings on large real-world document collections such as CORD-19, NIPS papers, and Tweet datasets show that, while LDA and DTM is a good model for discovering word-level topics, ITMWE discovers better document-level topic groups more efficiently in a dynamic environment, which is crucial in text mining applications.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从大型文本语料库中提取信息和推论。
由于工业4.0的出现,各种软件应用程序的使用急剧增长,从而产生了各种形式的数据的积累。科学、生物和社交媒体文本集合需要有效的机器学习方法来实现数据可解释性,这是组织在各种决策中所需要的。主题模型可以应用于生物医学文章、科学文章、Twitter数据和博客文章的文本挖掘。本文分析并比较了潜狄利克雷分配(LDA)、动态主题模型(DTM)和嵌入式主题模型(ETM)技术的性能。提出了一种基于词嵌入的增量主题模型(ITMWE),该模型在增量环境中处理大型文本数据,并提取最能描述文档集合的潜在主题。在CORD-19、NIPS论文和Tweet数据集等大型现实世界文档集合上进行的离线和在线设置实验表明,LDA和DTM是发现词级主题的好模型,而ITMWE在动态环境中更有效地发现更好的文档级主题组,这在文本挖掘应用中至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convolutional neural network based children recognition system using contactless fingerprints. On utilizing modified TOPSIS with R-norm q-rung picture fuzzy information measure green supplier selection. Adoption of machine learning algorithm for predicting the length of stay of patients (construction workers) during COVID pandemic. Adoption and sustainability of bitcoin and the blockchain technology in Nigeria. Debunking multi-lingual social media posts using deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1