Ronan M T Fleming, Hulda S Haraldsdottir, Le Hoai Minh, Phan Tu Vuong, Thomas Hankemeier, Ines Thiele
{"title":"Cardinality optimization in constraint-based modelling: application to human metabolism.","authors":"Ronan M T Fleming, Hulda S Haraldsdottir, Le Hoai Minh, Phan Tu Vuong, Thomas Hankemeier, Ines Thiele","doi":"10.1093/bioinformatics/btad450","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Several applications in constraint-based modelling can be mathematically formulated as cardinality optimization problems involving the minimization or maximization of the number of nonzeros in a vector. These problems include testing for stoichiometric consistency, testing for flux consistency, testing for thermodynamic flux consistency, computing sparse solutions to flux balance analysis problems and computing the minimum number of constraints to relax to render an infeasible flux balance analysis problem feasible. Such cardinality optimization problems are computationally complex, with no known polynomial time algorithms capable of returning an exact and globally optimal solution.</p><p><strong>Results: </strong>By approximating the zero-norm with nonconvex continuous functions, we reformulate a set of cardinality optimization problems in constraint-based modelling into a difference of convex functions. We implemented and numerically tested novel algorithms that approximately solve the reformulated problems using a sequence of convex programs. We applied these algorithms to various biochemical networks and demonstrate that our algorithms match or outperform existing related approaches. In particular, we illustrate the efficiency and practical utility of our algorithms for cardinality optimization problems that arise when extracting a model ready for thermodynamic flux balance analysis given a human metabolic reconstruction.</p><p><strong>Availability and implementation: </strong>Open source scripts to reproduce the results are here https://github.com/opencobra/COBRA.papers/2023_cardOpt with general purpose functions integrated within the COnstraint-Based Reconstruction and Analysis toolbox: https://github.com/opencobra/cobratoolbox.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495685/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad450","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Motivation: Several applications in constraint-based modelling can be mathematically formulated as cardinality optimization problems involving the minimization or maximization of the number of nonzeros in a vector. These problems include testing for stoichiometric consistency, testing for flux consistency, testing for thermodynamic flux consistency, computing sparse solutions to flux balance analysis problems and computing the minimum number of constraints to relax to render an infeasible flux balance analysis problem feasible. Such cardinality optimization problems are computationally complex, with no known polynomial time algorithms capable of returning an exact and globally optimal solution.
Results: By approximating the zero-norm with nonconvex continuous functions, we reformulate a set of cardinality optimization problems in constraint-based modelling into a difference of convex functions. We implemented and numerically tested novel algorithms that approximately solve the reformulated problems using a sequence of convex programs. We applied these algorithms to various biochemical networks and demonstrate that our algorithms match or outperform existing related approaches. In particular, we illustrate the efficiency and practical utility of our algorithms for cardinality optimization problems that arise when extracting a model ready for thermodynamic flux balance analysis given a human metabolic reconstruction.
Availability and implementation: Open source scripts to reproduce the results are here https://github.com/opencobra/COBRA.papers/2023_cardOpt with general purpose functions integrated within the COnstraint-Based Reconstruction and Analysis toolbox: https://github.com/opencobra/cobratoolbox.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.