Preparation of Bismuth Tungstate/Preoxidized Acrylonitrile/Acrylic Acid Copolymer Composite Nanofiber Membrane and Its Photocatalytic Properties.

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Recent Patents on Nanotechnology Pub Date : 2023-01-01 DOI:10.2174/1872210516666220513094531
Yinchun Fang, Xinhua Liu, Hongzhang Li, Yanchun Liu
{"title":"Preparation of Bismuth Tungstate/Preoxidized Acrylonitrile/Acrylic Acid Copolymer Composite Nanofiber Membrane and Its Photocatalytic Properties.","authors":"Yinchun Fang,&nbsp;Xinhua Liu,&nbsp;Hongzhang Li,&nbsp;Yanchun Liu","doi":"10.2174/1872210516666220513094531","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In this patent article, a novel bismuth tungstate/preoxidized acrylonitrile/ acrylic acid (AN/AA) copolymer composite nanofiber membrane was prepared, which was used as the visible light catalyst.</p><p><strong>Methods: </strong>AN/AA copolymer was synthesized, which was electrospun with bismuth nitrate and sodium tungstate to prepare the composite nanofiber. Then the composite nanofiber was preoxidized to prepare the bismuth tungstate/preoxidized AN/AA composite nanofiber membrane containing adsorption moiety and photocatalytic active moiety.</p><p><strong>Results: </strong>The photocatalytic activity of bismuth tungstate/preoxidized AN/AA composite nanofiber membrane with different preoxidized temperature, heating rate, and holding time by catalytic degradation of methylene blue was investigated. The optimal preoxidized conditions were as follows: the preoxidized temperature was heated to 200 °C with the heating rate of 1°C/min and the holding time at this temperature was 12 h. The chemical structure and morphology of the composite nanofiber membrane were characterized by FTIR, XRD, and SEM.</p><p><strong>Conclusion: </strong>The bismuth tungstate/preoxidized AN/AA composite nanofiber membrane obtained good photocatalytic properties and reusability under visible light. The degradation rate of methylene blue by this visible light catalyst could reach 90.24% for 4.5 h, and the degradation rate remained 81.53% for 4.5 h after 5 reuses.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"17 2","pages":"144-149"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/1872210516666220513094531","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In this patent article, a novel bismuth tungstate/preoxidized acrylonitrile/ acrylic acid (AN/AA) copolymer composite nanofiber membrane was prepared, which was used as the visible light catalyst.

Methods: AN/AA copolymer was synthesized, which was electrospun with bismuth nitrate and sodium tungstate to prepare the composite nanofiber. Then the composite nanofiber was preoxidized to prepare the bismuth tungstate/preoxidized AN/AA composite nanofiber membrane containing adsorption moiety and photocatalytic active moiety.

Results: The photocatalytic activity of bismuth tungstate/preoxidized AN/AA composite nanofiber membrane with different preoxidized temperature, heating rate, and holding time by catalytic degradation of methylene blue was investigated. The optimal preoxidized conditions were as follows: the preoxidized temperature was heated to 200 °C with the heating rate of 1°C/min and the holding time at this temperature was 12 h. The chemical structure and morphology of the composite nanofiber membrane were characterized by FTIR, XRD, and SEM.

Conclusion: The bismuth tungstate/preoxidized AN/AA composite nanofiber membrane obtained good photocatalytic properties and reusability under visible light. The degradation rate of methylene blue by this visible light catalyst could reach 90.24% for 4.5 h, and the degradation rate remained 81.53% for 4.5 h after 5 reuses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钨酸铋/预氧化丙烯腈/丙烯酸共聚物复合纳米纤维膜的制备及其光催化性能。
背景:本专利制备了一种新型钨酸铋/预氧化丙烯腈/丙烯酸(AN/AA)共聚物复合纳米纤维膜,并将其用作可见光催化剂。方法:合成AN/AA共聚物,用硝酸铋和钨酸钠静电纺丝制备复合纳米纤维。然后对复合纳米纤维进行预氧化,制备了钨酸铋/预氧化AN/AA复合纳米纤维膜,膜中含有吸附部分和光催化活性部分。结果:考察了钨酸铋/预氧化AN/AA复合纳米纤维膜在不同预氧化温度、加热速率和保温时间下催化降解亚甲基蓝的光催化活性。最佳预氧化条件为:预氧化温度为200℃,升温速率为1℃/min,保温时间为12 h。利用FTIR、XRD和SEM对复合纳米纤维膜的化学结构和形貌进行了表征。结论:钨酸铋/预氧化AN/AA复合纳米纤维膜在可见光下具有良好的光催化性能和可重复使用性。该可见光催化剂对亚甲基蓝的降解率在4.5 h内可达90.24%,重复使用5次后,4.5 h内亚甲基蓝的降解率仍为81.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Recent Patents on Nanotechnology
Recent Patents on Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.70
自引率
10.00%
发文量
50
审稿时长
3 months
期刊介绍: Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.
期刊最新文献
Development of Stabilized and Aqueous Dissolvable Nanosuspension Encompassing BCS Class IV Drug via Optimization of Process and Formulation Variables. Research on Controllable Synthesis and Growth Mechanism of Sodium Vanadium Fluorophosphate Nanosheets. Progress on One-dimensional Vanadium Pentoxide-based Nanomaterials for Advanced Energy Storage ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), China. Design Optimization and Evaluation of Patented Fast-Dissolving Oral Thin Film of Ambrisentan for the Treatment of Hypertension. From Solid to Fluid: Novel Approaches in Neuromorphic Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1