Louise Maddens, Fien Depaepe, Annelies Raes, Jan Elen
{"title":"Fostering students' motivation towards learning research skills: the role of autonomy, competence and relatedness support.","authors":"Louise Maddens, Fien Depaepe, Annelies Raes, Jan Elen","doi":"10.1007/s11251-022-09606-4","DOIUrl":null,"url":null,"abstract":"<p><p>In order to design learning environments that foster students' research skills, one can draw on instructional design models for complex learning, such as the 4C/ID model (in: van Merriënboer and Kirschner, Ten steps to complex learning, Routledge, London, 2018). However, few attempts have been undertaken to foster students' <i>motivation</i> towards learning complex skills in environments based on the 4C/ID model. This study explores the effects of providing autonomy, competence and relatedness support (in Deci and Ryan, Psychol Inquiry 11(4): 227-268, https://doi.org/10.1207/S15327965PLI1104_01, 2000) in a 4C/ID based online learning environment on upper secondary school behavioral sciences students' cognitive and motivational outcomes. Students' cognitive outcomes are measured by means of a research skills test consisting of short multiple choice and short answer items (in order to assess research skills in a broad way), and a research skills task in which students are asked to integrate their skills in writing a research proposal (in order to assess research skills in an integrative manner). Students' motivational outcomes are measured by means of students' autonomous and controlled motivation, and students' amotivation. A pretest-intervention-posttest design was set up in order to compare 233 upper secondary school behavioral sciences students' outcomes among (1) a 4C/ID based online learning environment condition, and (2) an identical condition additively providing support for students' need satisfaction. Both learning environments proved equally effective in improving students' scores on the research skills test. Students in the need supportive condition scored higher on the research skills task compared to their peers in the baseline condition. Students' autonomous and controlled motivation were not affected by the intervention. Although, unexpectedly, students' amotivation increased in both conditions, students' amotivation was lower in the need supportive condition compared to students in the baseline condition. Theoretical relationships were established between students' need satisfaction, students' motivation (autonomous, controlled, and amotivation), and students' cognitive outcomes. These findings are discussed taking into account the COVID-19 affected setting in which the study took place.</p>","PeriodicalId":47990,"journal":{"name":"Instructional Science","volume":"51 1","pages":"165-199"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786465/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instructional Science","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11251-022-09606-4","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1
Abstract
In order to design learning environments that foster students' research skills, one can draw on instructional design models for complex learning, such as the 4C/ID model (in: van Merriënboer and Kirschner, Ten steps to complex learning, Routledge, London, 2018). However, few attempts have been undertaken to foster students' motivation towards learning complex skills in environments based on the 4C/ID model. This study explores the effects of providing autonomy, competence and relatedness support (in Deci and Ryan, Psychol Inquiry 11(4): 227-268, https://doi.org/10.1207/S15327965PLI1104_01, 2000) in a 4C/ID based online learning environment on upper secondary school behavioral sciences students' cognitive and motivational outcomes. Students' cognitive outcomes are measured by means of a research skills test consisting of short multiple choice and short answer items (in order to assess research skills in a broad way), and a research skills task in which students are asked to integrate their skills in writing a research proposal (in order to assess research skills in an integrative manner). Students' motivational outcomes are measured by means of students' autonomous and controlled motivation, and students' amotivation. A pretest-intervention-posttest design was set up in order to compare 233 upper secondary school behavioral sciences students' outcomes among (1) a 4C/ID based online learning environment condition, and (2) an identical condition additively providing support for students' need satisfaction. Both learning environments proved equally effective in improving students' scores on the research skills test. Students in the need supportive condition scored higher on the research skills task compared to their peers in the baseline condition. Students' autonomous and controlled motivation were not affected by the intervention. Although, unexpectedly, students' amotivation increased in both conditions, students' amotivation was lower in the need supportive condition compared to students in the baseline condition. Theoretical relationships were established between students' need satisfaction, students' motivation (autonomous, controlled, and amotivation), and students' cognitive outcomes. These findings are discussed taking into account the COVID-19 affected setting in which the study took place.
期刊介绍:
Instructional Science, An International Journal of the Learning Sciences, promotes a deeper understanding of the nature, theory, and practice of learning and of environments in which learning occurs. The journal’s conception of learning, as well as of instruction, is broad, recognizing that there are many ways to stimulate and support learning. The journal encourages submission of research papers, covering a variety of perspectives from the learning sciences and learning, by people of all ages, in all areas of the curriculum, in technologically rich or lean environments, and in informal and formal learning contexts. Emphasizing reports of original empirical research, the journal provides space for full and detailed reporting of major studies. Regardless of the topic, papers published in the journal all make an explicit contribution to the science of learning and instruction by drawing out the implications for the design and implementation of learning environments. We particularly encourage the submission of papers that highlight the interaction between learning processes and learning environments, focus on meaningful learning, and recognize the role of context. Papers are characterized by methodological variety that ranges, for example, from experimental studies in laboratory settings, to qualitative studies, to design-based research in authentic learning settings. The Editors will occasionally invite experts to write a review article on an important topic in the field. When review articles are considered for publication, they must deal with central issues in the domain of learning and learning environments. The journal accepts replication studies. Such a study should replicate an important and seminal finding in the field, from a study which was originally conducted by a different research group. Most years, Instructional Science publishes a guest-edited thematic special issue on a topic central to the journal''s scope. Proposals for special issues can be sent to the Editor-in-Chief. Proposals will be discussed in Spring and Fall of each year, and the proposers will be notified afterwards. To be considered for the Spring and Fall discussion, proposals should be sent to the Editor-in-Chief by March 1 and October 1, respectively. Please note that articles that are submitted for a special issue will follow the same review process as regular articles.