Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders.

Jelle Jasper Teijema, Laura Hofstee, Marlies Brouwer, Jonathan de Bruin, Gerbrich Ferdinands, Jan de Boer, Pablo Vizan, Sofie van den Brand, Claudi Bockting, Rens van de Schoot, Ayoub Bagheri
{"title":"Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders.","authors":"Jelle Jasper Teijema,&nbsp;Laura Hofstee,&nbsp;Marlies Brouwer,&nbsp;Jonathan de Bruin,&nbsp;Gerbrich Ferdinands,&nbsp;Jan de Boer,&nbsp;Pablo Vizan,&nbsp;Sofie van den Brand,&nbsp;Claudi Bockting,&nbsp;Rens van de Schoot,&nbsp;Ayoub Bagheri","doi":"10.3389/frma.2023.1178181","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study examines the performance of active learning-aided systematic reviews using a deep learning-based model compared to traditional machine learning approaches, and explores the potential benefits of model-switching strategies.</p><p><strong>Methods: </strong>Comprising four parts, the study: 1) analyzes the performance and stability of active learning-aided systematic review; 2) implements a convolutional neural network classifier; 3) compares classifier and feature extractor performance; and 4) investigates the impact of model-switching strategies on review performance.</p><p><strong>Results: </strong>Lighter models perform well in early simulation stages, while other models show increased performance in later stages. Model-switching strategies generally improve performance compared to using the default classification model alone.</p><p><strong>Discussion: </strong>The study's findings support the use of model-switching strategies in active learning-based systematic review workflows. It is advised to begin the review with a light model, such as Naïve Bayes or logistic regression, and switch to a heavier classification model based on a heuristic rule when needed.</p>","PeriodicalId":73104,"journal":{"name":"Frontiers in research metrics and analytics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227618/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in research metrics and analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frma.2023.1178181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction: This study examines the performance of active learning-aided systematic reviews using a deep learning-based model compared to traditional machine learning approaches, and explores the potential benefits of model-switching strategies.

Methods: Comprising four parts, the study: 1) analyzes the performance and stability of active learning-aided systematic review; 2) implements a convolutional neural network classifier; 3) compares classifier and feature extractor performance; and 4) investigates the impact of model-switching strategies on review performance.

Results: Lighter models perform well in early simulation stages, while other models show increased performance in later stages. Model-switching strategies generally improve performance compared to using the default classification model alone.

Discussion: The study's findings support the use of model-switching strategies in active learning-based systematic review workflows. It is advised to begin the review with a light model, such as Naïve Bayes or logistic regression, and switch to a heavier classification model based on a heuristic rule when needed.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用切换分类模型的主动学习为基础的系统回顾:抑郁症的发病、维持和复发的案例。
本研究使用基于深度学习的模型,与传统机器学习方法相比,研究了主动学习辅助系统评论的性能,并探索了模型切换策略的潜在好处。方法:研究分为四个部分:1)分析主动学习辅助系统评价的性能和稳定性;2)实现卷积神经网络分类器;3)比较分类器和特征提取器的性能;4)研究了模型切换策略对评审绩效的影响。结果:较轻的模型在模拟早期表现较好,而其他模型在后期表现较好。与单独使用默认分类模型相比,模型切换策略通常可以提高性能。讨论:研究结果支持在基于主动学习的系统评审工作流程中使用模型转换策略。建议从较轻的模型开始审查,例如Naïve贝叶斯或逻辑回归,并在需要时切换到基于启发式规则的较重的分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Navigating algorithm bias in AI: ensuring fairness and trust in Africa. The ethics of knowledge sharing: a feminist examination of intellectual property rights and open-source materials in gender transformative methodologies. Complexity and phase transitions in citation networks: insights from artificial intelligence research. Designing measures of complex collaborations with participatory, evidence-centered design. Patent data-driven analysis of literature associations with changing innovation trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1