Biologically plausible single-layer networks for nonnegative independent component analysis.

IF 1.6 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS Biological Cybernetics Pub Date : 2022-12-01 DOI:10.1007/s00422-022-00943-8
David Lipshutz, Cengiz Pehlevan, Dmitri B Chklovskii
{"title":"Biologically plausible single-layer networks for nonnegative independent component analysis.","authors":"David Lipshutz,&nbsp;Cengiz Pehlevan,&nbsp;Dmitri B Chklovskii","doi":"10.1007/s00422-022-00943-8","DOIUrl":null,"url":null,"abstract":"<p><p>An important problem in neuroscience is to understand how brains extract relevant signals from mixtures of unknown sources, i.e., perform blind source separation. To model how the brain performs this task, we seek a biologically plausible single-layer neural network implementation of a blind source separation algorithm. For biological plausibility, we require the network to satisfy the following three basic properties of neuronal circuits: (i) the network operates in the online setting; (ii) synaptic learning rules are local; and (iii) neuronal outputs are nonnegative. Closest is the work by Pehlevan et al. (Neural Comput 29:2925-2954, 2017), which considers nonnegative independent component analysis (NICA), a special case of blind source separation that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They derive an algorithm with a biologically plausible 2-layer network implementation. In this work, we improve upon their result by deriving 2 algorithms for NICA, each with a biologically plausible single-layer network implementation. The first algorithm maps onto a network with indirect lateral connections mediated by interneurons. The second algorithm maps onto a network with direct lateral connections and multi-compartmental output neurons.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":"116 5-6","pages":"557-568"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00943-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 10

Abstract

An important problem in neuroscience is to understand how brains extract relevant signals from mixtures of unknown sources, i.e., perform blind source separation. To model how the brain performs this task, we seek a biologically plausible single-layer neural network implementation of a blind source separation algorithm. For biological plausibility, we require the network to satisfy the following three basic properties of neuronal circuits: (i) the network operates in the online setting; (ii) synaptic learning rules are local; and (iii) neuronal outputs are nonnegative. Closest is the work by Pehlevan et al. (Neural Comput 29:2925-2954, 2017), which considers nonnegative independent component analysis (NICA), a special case of blind source separation that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They derive an algorithm with a biologically plausible 2-layer network implementation. In this work, we improve upon their result by deriving 2 algorithms for NICA, each with a biologically plausible single-layer network implementation. The first algorithm maps onto a network with indirect lateral connections mediated by interneurons. The second algorithm maps onto a network with direct lateral connections and multi-compartmental output neurons.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物学上似是而非的独立成分分析的单层网络。
神经科学中的一个重要问题是了解大脑如何从未知来源的混合物中提取相关信号,即进行盲源分离。为了模拟大脑如何执行这项任务,我们寻求一种生物学上合理的单层神经网络实现盲源分离算法。为了生物合理性,我们要求网络满足神经元回路的以下三个基本属性:(i)网络在在线设置中运行;(ii)突触学习规则是局部的;(iii)神经元输出是非负的。最接近的是Pehlevan等人的工作(Neural Comput 29:2925-2954, 2017),它考虑了非负独立分量分析(NICA),这是盲源分离的一种特殊情况,假设混合物是不相关的非负源的线性组合。他们推导出一种具有生物学上合理的两层网络实现的算法。在这项工作中,我们通过推导NICA的两种算法来改进他们的结果,每种算法都具有生物学上合理的单层网络实现。第一种算法映射到由中间神经元介导的间接横向连接网络。第二种算法映射到一个具有直接横向连接和多室输出神经元的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
期刊最新文献
Encoding of movement primitives and body posture through distributed proprioception in walking and climbing insects. Task success in trained spiking neural network models coincides with emergence of cross-stimulus-modulated inhibition. A control engineering perspective on the advantages of efference copies. Molecular dynamics simulations of proteins: an in-depth review of computational strategies, structural insights, and their role in medicinal chemistry and drug development. Effects of transcranial alternating current stimulation on Spike train correlation in two-compartment model neurons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1