Development and Validation of Rapid Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification for Detection of Rift Valley Fever Virus.

IF 1.1 Q4 VIROLOGY Advances in Virology Pub Date : 2023-01-01 DOI:10.1155/2023/1863980
Francis Wekesa, Mark Wamalwa, Richard Oduor, Yatinder Binepal, Leonard Ateya, Noah Okumu, Angela M'kwenda, Christopher Masaba, Eugine Mukhaye
{"title":"Development and Validation of Rapid Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification for Detection of Rift Valley Fever Virus.","authors":"Francis Wekesa,&nbsp;Mark Wamalwa,&nbsp;Richard Oduor,&nbsp;Yatinder Binepal,&nbsp;Leonard Ateya,&nbsp;Noah Okumu,&nbsp;Angela M'kwenda,&nbsp;Christopher Masaba,&nbsp;Eugine Mukhaye","doi":"10.1155/2023/1863980","DOIUrl":null,"url":null,"abstract":"<p><p>Rift Valley fever virus (RVFV) is a high-priority zoonotic pathogen with the ability to cause massive loss during its outbreak within a very short period of time. Lack of a highly sensitive, instant reading diagnostic method for RVFV, which is more suitable for on-site testing, is a big gap that needs to be addressed. The aim of this study was to develop a novel one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the rapid detection of RVFV. To achieve this, the selected RVFV <i>M</i> segment nucleotide sequences were aligned using Multiple Sequence Comparison by Log-Expectation (MUSCLE) software in MEGA11 version 11.0.11 program to identify conserved regions. A 211 pb sequence was identified and six different primers to amplify it were designed using NEB LAMP Primer design tool version 1.1.0. The specificity of the designed primers was tested using primer BLAST, and a primer set, specific to RVFV and able to form a loop, was selected. In this study, we developed a single-tube test based on calorimetric RT-LAMP that enabled the visual detection of RVFV within 30 minutes at 65°C. Diagnostic sensitivity and specificity of the newly developed kit were compared with RVFV qRT-PCR, using total RNA samples extracted from 118 blood samples. The colorimetric RT-LAMP assay had a sensitivity of 98.36% and a specificity of 96.49%. The developed RT-LAMP was found to be tenfold more sensitive compared to the RVFV qRT-PCR assay commonly used in the confirmatory diagnosis of RVFV.</p>","PeriodicalId":7473,"journal":{"name":"Advances in Virology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902148/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1863980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Rift Valley fever virus (RVFV) is a high-priority zoonotic pathogen with the ability to cause massive loss during its outbreak within a very short period of time. Lack of a highly sensitive, instant reading diagnostic method for RVFV, which is more suitable for on-site testing, is a big gap that needs to be addressed. The aim of this study was to develop a novel one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the rapid detection of RVFV. To achieve this, the selected RVFV M segment nucleotide sequences were aligned using Multiple Sequence Comparison by Log-Expectation (MUSCLE) software in MEGA11 version 11.0.11 program to identify conserved regions. A 211 pb sequence was identified and six different primers to amplify it were designed using NEB LAMP Primer design tool version 1.1.0. The specificity of the designed primers was tested using primer BLAST, and a primer set, specific to RVFV and able to form a loop, was selected. In this study, we developed a single-tube test based on calorimetric RT-LAMP that enabled the visual detection of RVFV within 30 minutes at 65°C. Diagnostic sensitivity and specificity of the newly developed kit were compared with RVFV qRT-PCR, using total RNA samples extracted from 118 blood samples. The colorimetric RT-LAMP assay had a sensitivity of 98.36% and a specificity of 96.49%. The developed RT-LAMP was found to be tenfold more sensitive compared to the RVFV qRT-PCR assay commonly used in the confirmatory diagnosis of RVFV.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
裂谷热病毒快速比色反转录环介导等温扩增检测方法的建立与验证。
裂谷热病毒(RVFV)是一种高度优先的人畜共患病原体,在暴发期间能够在很短的时间内造成巨大损失。缺乏一种更适合于现场检测的高灵敏度、即时阅读的裂谷热病毒诊断方法是一个需要解决的巨大缺口。本研究的目的是建立一种新的一步逆转录环介导的等温扩增(RT-LAMP)方法,用于快速检测RVFV。为此,选择的RVFV M片段核苷酸序列使用MEGA11 version 11.0.11中的Multiple Sequence Comparison by Log-Expectation (MUSCLE)软件进行比对,以确定保守区域。利用NEB LAMP引物设计工具1.1.0版设计了6条不同的扩增引物。设计的引物通过BLAST检测特异性,筛选出一组对RVFV特异性强且能形成环路的引物。在这项研究中,我们开发了一种基于量热RT-LAMP的单管测试,可以在65°C下30分钟内视觉检测RVFV。利用从118份血样中提取的总RNA样本,将新开发的试剂盒与RVFV qRT-PCR的诊断敏感性和特异性进行比较。RT-LAMP比色法灵敏度为98.36%,特异性为96.49%。研究发现,与通常用于RVFV确诊诊断的RVFV qRT-PCR相比,开发的RT-LAMP灵敏度高10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
23
审稿时长
22 weeks
期刊最新文献
Increased Incidence of Rhinovirus Pneumonia in Children During the COVID-19 Pandemic in Mexico. Measles Outbreaks in the Republic of Congo: Epidemiology of Laboratory-Confirmed Cases Between 2019 and 2022. Support Vector Machine Outperforms Other Machine Learning Models in Early Diagnosis of Dengue Using Routine Clinical Data. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Hepatitis B Virus (HBV) Genotypes in an Ecuadorian Population: A Preliminary Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1