{"title":"Mathematical artificial intelligence design of mutation-proof COVID-19 monoclonal antibodies.","authors":"Jiahui Chen, Guo-Wei Wei","doi":"10.4310/cis.2022.v22.n3.a3","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have compromised existing vaccines and posed a grand challenge to coronavirus disease 2019 (COVID-19) prevention, control, and global economic recovery. For COVID-19 patients, one of the most effective COVID-19 medications is monoclonal antibody (mAb) therapies. The United States Food and Drug Administration (U.S. FDA) has given the emergency use authorization (EUA) to a few mAbs, including those from Regeneron, Eli Elly, etc. However, they are also undermined by SARS-CoV-2 mutations. It is imperative to develop effective mutation-proof mAbs for treating COVID-19 patients infected by all emerging variants and/or the original SARS-CoV-2. We carry out a deep mutational scanning to present the blueprint of such mAbs using algebraic topology and artificial intelligence (AI). To reduce the risk of clinical trial-related failure, we select five mAbs either with FDA EUA or in clinical trials as our starting point. We demonstrate that topological AI-designed mAbs are effective for variants of concerns and variants of interest designated by the World Health Organization (WHO), as well as the original SARS-CoV-2. Our topological AI methodologies have been validated by tens of thousands of deep mutational data and their predictions have been confirmed by results from tens of experimental laboratories and population-level statistics of genome isolates from hundreds of thousands of patients.</p>","PeriodicalId":45018,"journal":{"name":"Communications in Information and Systems","volume":"22 3","pages":"339-361"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881605/pdf/nihms-1825681.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cis.2022.v22.n3.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have compromised existing vaccines and posed a grand challenge to coronavirus disease 2019 (COVID-19) prevention, control, and global economic recovery. For COVID-19 patients, one of the most effective COVID-19 medications is monoclonal antibody (mAb) therapies. The United States Food and Drug Administration (U.S. FDA) has given the emergency use authorization (EUA) to a few mAbs, including those from Regeneron, Eli Elly, etc. However, they are also undermined by SARS-CoV-2 mutations. It is imperative to develop effective mutation-proof mAbs for treating COVID-19 patients infected by all emerging variants and/or the original SARS-CoV-2. We carry out a deep mutational scanning to present the blueprint of such mAbs using algebraic topology and artificial intelligence (AI). To reduce the risk of clinical trial-related failure, we select five mAbs either with FDA EUA or in clinical trials as our starting point. We demonstrate that topological AI-designed mAbs are effective for variants of concerns and variants of interest designated by the World Health Organization (WHO), as well as the original SARS-CoV-2. Our topological AI methodologies have been validated by tens of thousands of deep mutational data and their predictions have been confirmed by results from tens of experimental laboratories and population-level statistics of genome isolates from hundreds of thousands of patients.