Infestation of Rice by Gall Midge Influences Density and Diversity of Pseudomonas and Wolbachia in the Host Plant Microbiome.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Genomics Pub Date : 2022-06-10 DOI:10.2174/1389202923666220401101604
Deepak K Sinha, Ayushi Gupta, Ayyagari P Padmakumari, Jagadish S Bentur, Suresh Nair
{"title":"Infestation of Rice by Gall Midge Influences Density and Diversity of <i>Pseudomonas</i> and <i>Wolbachia</i> in the Host Plant Microbiome.","authors":"Deepak K Sinha,&nbsp;Ayushi Gupta,&nbsp;Ayyagari P Padmakumari,&nbsp;Jagadish S Bentur,&nbsp;Suresh Nair","doi":"10.2174/1389202923666220401101604","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background</i>:</b> The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, <i>Orseolia oryzae</i>), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant <i>via</i> oral secretions, and as a result, the host mounts an appropriate defense response(s) (<i>i.e</i>., up-regulation of the salicylic acid pathway) against these endosymbionts. <b><i>Methods</i>:</b> The current study aimed to analyze the microbiome present at the feeding site of GM maggots to determine the exchange of bacterial species between GM and its host and to elucidate their role in rice-GM interaction using a next-generation sequencing approach. <b><i>Results</i>:</b> Our results revealed differential representation of the phylum Proteobacteria in the GM-infested and -uninfested rice tissues. Furthermore, analysis of the species diversity of <i>Pseudomonas</i> and <i>Wolbachia</i> supergroups at the feeding sites indicated the exchange of bacterial species between GM and its host upon infestation. <b><i>Conclusion</i>:</b> As rice-GM microbial associations remain relatively unstudied, these findings not only add to our current understanding of microbe-assisted insect-plant interactions but also provide valuable insights into how these bacteria drive insect-plant coevolution. Moreover, to the best of our knowledge, this is the first report analyzing the microbiome of a host plant (rice) at the feeding site of its insect pest (GM).</p>","PeriodicalId":10803,"journal":{"name":"Current Genomics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/87/87/CG-23-126.PMC9878839.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389202923666220401101604","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, Orseolia oryzae), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant via oral secretions, and as a result, the host mounts an appropriate defense response(s) (i.e., up-regulation of the salicylic acid pathway) against these endosymbionts. Methods: The current study aimed to analyze the microbiome present at the feeding site of GM maggots to determine the exchange of bacterial species between GM and its host and to elucidate their role in rice-GM interaction using a next-generation sequencing approach. Results: Our results revealed differential representation of the phylum Proteobacteria in the GM-infested and -uninfested rice tissues. Furthermore, analysis of the species diversity of Pseudomonas and Wolbachia supergroups at the feeding sites indicated the exchange of bacterial species between GM and its host upon infestation. Conclusion: As rice-GM microbial associations remain relatively unstudied, these findings not only add to our current understanding of microbe-assisted insect-plant interactions but also provide valuable insights into how these bacteria drive insect-plant coevolution. Moreover, to the best of our knowledge, this is the first report analyzing the microbiome of a host plant (rice) at the feeding site of its insect pest (GM).

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瘿蚊侵染水稻影响寄主植物微生物群中假单胞菌和沃尔巴克氏菌的密度和多样性。
背景:植食性昆虫的毒力主要取决于它们为生存而逃避或抑制宿主防御的能力。稻瘿蚊(GM, Orseolia oryzae)是一种单食性水稻害虫,引起宿主防御类似于病原体攻击时引起的防御。这可能是由于转基因取食行为,其中转基因内共生体通过口腔分泌物转移到宿主植物,因此,宿主对这些内共生体产生适当的防御反应(即水杨酸途径的上调)。方法:本研究旨在利用新一代测序方法分析转基因蝇取食部位的微生物组,以确定转基因与寄主之间的细菌交换,并阐明它们在水稻-转基因相互作用中的作用。结果:我们的研究结果揭示了变形菌门在转基因侵染和未侵染水稻组织中的差异表现。此外,对取食地点假单胞菌和沃尔巴克氏菌超群的物种多样性分析表明,转基因生物侵染后与宿主之间的细菌物种交换。结论:由于水稻-转基因微生物的关联研究相对较少,这些发现不仅增加了我们目前对微生物辅助昆虫-植物相互作用的理解,而且为这些细菌如何驱动昆虫-植物共同进化提供了有价值的见解。此外,据我们所知,这是第一个分析寄主植物(水稻)在其害虫(转基因)取食部位微生物组的报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Genomics
Current Genomics 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
29
审稿时长
>0 weeks
期刊介绍: Current Genomics is a peer-reviewed journal that provides essential reading about the latest and most important developments in genome science and related fields of research. Systems biology, systems modeling, machine learning, network inference, bioinformatics, computational biology, epigenetics, single cell genomics, extracellular vesicles, quantitative biology, and synthetic biology for the study of evolution, development, maintenance, aging and that of human health, human diseases, clinical genomics and precision medicine are topics of particular interest. The journal covers plant genomics. The journal will not consider articles dealing with breeding and livestock. Current Genomics publishes three types of articles including: i) Research papers from internationally-recognized experts reporting on new and original data generated at the genome scale level. Position papers dealing with new or challenging methodological approaches, whether experimental or mathematical, are greatly welcome in this section. ii) Authoritative and comprehensive full-length or mini reviews from widely recognized experts, covering the latest developments in genome science and related fields of research such as systems biology, statistics and machine learning, quantitative biology, and precision medicine. Proposals for mini-hot topics (2-3 review papers) and full hot topics (6-8 review papers) guest edited by internationally-recognized experts are welcome in this section. Hot topic proposals should not contain original data and they should contain articles originating from at least 2 different countries. iii) Opinion papers from internationally recognized experts addressing contemporary questions and issues in the field of genome science and systems biology and basic and clinical research practices.
期刊最新文献
Circular RNA Involvement in Aging and Longevity. An Update on Non-invasive Approaches for Genetic Testing of the Preimplantation Embryo. Heuristic Analysis of Genomic Sequence Processing Models for High Efficiency Prediction: A Statistical Perspective. The Potential Role of Plastome Copy Number as a Quality Biomarker for Plant Products using Real-time Quantitative Polymerase Chain Reaction. Long Non-coding RNAs: Pivotal Epigenetic Regulators in Diabetic Retinopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1