Adriana Maria Antunes, Júlio Gabriel Nunes Stival, Cíntia Pelegrineti Targueta, Mariana Pires de Campos Telles, Thannya Nascimentos Soares
{"title":"A Pipeline for the Development of Microsatellite Markers using Next Generation Sequencing Data.","authors":"Adriana Maria Antunes, Júlio Gabriel Nunes Stival, Cíntia Pelegrineti Targueta, Mariana Pires de Campos Telles, Thannya Nascimentos Soares","doi":"10.2174/1389202923666220428101350","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background</i>:</b> Also known as Simple Sequence Repetitions (SSRs), microsatellites are profoundly informative molecular markers and powerful tools in genetics and ecology studies on plants. <b><i>Objective</i>:</b> This research presents a workflow for developing microsatellite markers using genome skimming. <b><i>Methods</i>:</b> The pipeline was proposed in several stages that must be performed sequentially: obtaining DNA sequences, identifying microsatellite regions, designing primers, and selecting candidate microsatellite regions to develop the markers. Our pipeline efficiency was analyzed using Illumina sequencing data from the non-model tree species <i>Pterodon emarginatus</i> Vog. <b><i>Results</i>:</b> The pipeline revealed 4,382 microsatellite regions and drew 7,411 pairs of primers for <i>P. emarginatus</i>. However, a much larger number of microsatellite regions with the potential to develop markers were discovered from our pipeline. We selected 50 microsatellite regions with high potential for developing markers and organized 29 microsatellite regions in sets for multiplex PCR. <b><i>Conclusion</i>:</b> The proposed pipeline is a powerful tool for fast and efficient development of microsatellite markers on a large scale in several species, especially nonmodel plant species.</p>","PeriodicalId":10803,"journal":{"name":"Current Genomics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/28/CG-23-175.PMC9878831.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389202923666220428101350","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Also known as Simple Sequence Repetitions (SSRs), microsatellites are profoundly informative molecular markers and powerful tools in genetics and ecology studies on plants. Objective: This research presents a workflow for developing microsatellite markers using genome skimming. Methods: The pipeline was proposed in several stages that must be performed sequentially: obtaining DNA sequences, identifying microsatellite regions, designing primers, and selecting candidate microsatellite regions to develop the markers. Our pipeline efficiency was analyzed using Illumina sequencing data from the non-model tree species Pterodon emarginatus Vog. Results: The pipeline revealed 4,382 microsatellite regions and drew 7,411 pairs of primers for P. emarginatus. However, a much larger number of microsatellite regions with the potential to develop markers were discovered from our pipeline. We selected 50 microsatellite regions with high potential for developing markers and organized 29 microsatellite regions in sets for multiplex PCR. Conclusion: The proposed pipeline is a powerful tool for fast and efficient development of microsatellite markers on a large scale in several species, especially nonmodel plant species.
期刊介绍:
Current Genomics is a peer-reviewed journal that provides essential reading about the latest and most important developments in genome science and related fields of research. Systems biology, systems modeling, machine learning, network inference, bioinformatics, computational biology, epigenetics, single cell genomics, extracellular vesicles, quantitative biology, and synthetic biology for the study of evolution, development, maintenance, aging and that of human health, human diseases, clinical genomics and precision medicine are topics of particular interest. The journal covers plant genomics. The journal will not consider articles dealing with breeding and livestock.
Current Genomics publishes three types of articles including:
i) Research papers from internationally-recognized experts reporting on new and original data generated at the genome scale level. Position papers dealing with new or challenging methodological approaches, whether experimental or mathematical, are greatly welcome in this section.
ii) Authoritative and comprehensive full-length or mini reviews from widely recognized experts, covering the latest developments in genome science and related fields of research such as systems biology, statistics and machine learning, quantitative biology, and precision medicine. Proposals for mini-hot topics (2-3 review papers) and full hot topics (6-8 review papers) guest edited by internationally-recognized experts are welcome in this section. Hot topic proposals should not contain original data and they should contain articles originating from at least 2 different countries.
iii) Opinion papers from internationally recognized experts addressing contemporary questions and issues in the field of genome science and systems biology and basic and clinical research practices.