Colleen E Thurman, Molly M Klores, Annie E Wolfe, William T Poueymirou, Ellen M Levee, Aaron C Ericsson, Craig L Franklin, Balu Reddyjarugu
{"title":"Effect of Housing Condition and Diet on the Gut Microbiota of Weanling Immunocompromised Mice.","authors":"Colleen E Thurman, Molly M Klores, Annie E Wolfe, William T Poueymirou, Ellen M Levee, Aaron C Ericsson, Craig L Franklin, Balu Reddyjarugu","doi":"10.30802/AALAS-CM-21-000015","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal microbiota are affected by a wide variety of extrinsic and intrinsic factors. In the husbandry of laboratory mice and design of experiments, controlling these factors where possible provides more reproducible results. However, the microbiome is dynamic, particularly in the weeks immediately after weaning. In this study, we characterized the baseline gastrointestinal microbiota of immunocompromised mice housed under standard conditions for our facility for 6 weeks after weaning, with housing either in an isolator or in individually ventilated cages and a common antibiotic diet (trimethoprim sulfamethoxazole). We compared these conditions to a group fed a standard diet and a group that was weaned to a standard diet then switched to antibiotic diet after 2 weeks. We found no clear effect of diet on richness and α diversity of the gastrointestinal microbiota. However, diet did affect which taxa were enriched at the end of the experiment. The change to antibiotic diet during the experiment did not convert the gastrointestinal microbiome to a state similar to mice consistently fed antibiotic diet, which may highlight the importance of the initial post-weaning period in the establishment of the gastrointestinal microbiome. We also observed a strong effect of housing type (isolator compared with individually ventilated cage) on the richness, α diversity, β diversity, and taxa enriched over the course of the experiment. Investigating whether the diet or microbiome affects a certain strain's phenotype is warranted in some cases. However, our findings do not suggest that maintaining immunocompromised mice on antibiotic feed has a clinical benefit when potential pathogens are operationally excluded, nor does it result in a more consistent or controlled microbiome in the post-weaning period.</p>","PeriodicalId":10659,"journal":{"name":"Comparative medicine","volume":"71 6","pages":"485-491"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718622/pdf/cm21000015.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-CM-21-000015","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Gastrointestinal microbiota are affected by a wide variety of extrinsic and intrinsic factors. In the husbandry of laboratory mice and design of experiments, controlling these factors where possible provides more reproducible results. However, the microbiome is dynamic, particularly in the weeks immediately after weaning. In this study, we characterized the baseline gastrointestinal microbiota of immunocompromised mice housed under standard conditions for our facility for 6 weeks after weaning, with housing either in an isolator or in individually ventilated cages and a common antibiotic diet (trimethoprim sulfamethoxazole). We compared these conditions to a group fed a standard diet and a group that was weaned to a standard diet then switched to antibiotic diet after 2 weeks. We found no clear effect of diet on richness and α diversity of the gastrointestinal microbiota. However, diet did affect which taxa were enriched at the end of the experiment. The change to antibiotic diet during the experiment did not convert the gastrointestinal microbiome to a state similar to mice consistently fed antibiotic diet, which may highlight the importance of the initial post-weaning period in the establishment of the gastrointestinal microbiome. We also observed a strong effect of housing type (isolator compared with individually ventilated cage) on the richness, α diversity, β diversity, and taxa enriched over the course of the experiment. Investigating whether the diet or microbiome affects a certain strain's phenotype is warranted in some cases. However, our findings do not suggest that maintaining immunocompromised mice on antibiotic feed has a clinical benefit when potential pathogens are operationally excluded, nor does it result in a more consistent or controlled microbiome in the post-weaning period.
期刊介绍:
Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.