Antoine Gobert, Marie Sarah Evers, Christophe Morge, Céline Sparrow, Vincent Delafont
{"title":"Comparison of DNA purification methods for high-throughput sequencing of fungal communities from wine fermentation","authors":"Antoine Gobert, Marie Sarah Evers, Christophe Morge, Céline Sparrow, Vincent Delafont","doi":"10.1002/mbo3.1321","DOIUrl":null,"url":null,"abstract":"<p>High-throughput sequencing approaches, which target a taxonomically discriminant locus, allow for in-depth insight into microbial communities’ compositions. Although microorganisms are historically investigated by cultivation on artificial culture media, this method presents strong limitations, since only a limited proportion of microorganisms can be grown in vitro. This pitfall appears even more limiting in enological and winemaking processes, during which a wide range of molds, yeasts, and bacteria are observed at the different stages of the fermentation course. Such an understanding of those dynamic communities and how they impact wine quality therefore stands as a major challenge for the future of enology. As of now, although high-throughput sequencing has already allowed for the investigation of fungal communities, there is no available comparative study focusing on the performance of microbial deoxyribonucleic acid (DNA) extraction in enological matrixes. This study aims to provide a comparison of five selected extraction methods, assayed on both must and fermenting must, as well as on finished wine. These procedures were evaluated according to their extraction yields, the purity of their extracted DNA, and the robustness of downstream molecular analyses, including polymerase chain reaction and high-throughput sequencing of fungal communities. Altogether, two out of the five assessed microbial DNA extraction methods (DNeasy PowerSoil Pro Kit and E.Z.N.A.® Food DNA Kit) appeared suitable for robust evaluations of the microbial communities in wine samples. Consequently, this study provides robust tools for facilitated upcoming studies to further investigate microbial communities during winemaking using high-throughput sequencing.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9593259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1321","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-throughput sequencing approaches, which target a taxonomically discriminant locus, allow for in-depth insight into microbial communities’ compositions. Although microorganisms are historically investigated by cultivation on artificial culture media, this method presents strong limitations, since only a limited proportion of microorganisms can be grown in vitro. This pitfall appears even more limiting in enological and winemaking processes, during which a wide range of molds, yeasts, and bacteria are observed at the different stages of the fermentation course. Such an understanding of those dynamic communities and how they impact wine quality therefore stands as a major challenge for the future of enology. As of now, although high-throughput sequencing has already allowed for the investigation of fungal communities, there is no available comparative study focusing on the performance of microbial deoxyribonucleic acid (DNA) extraction in enological matrixes. This study aims to provide a comparison of five selected extraction methods, assayed on both must and fermenting must, as well as on finished wine. These procedures were evaluated according to their extraction yields, the purity of their extracted DNA, and the robustness of downstream molecular analyses, including polymerase chain reaction and high-throughput sequencing of fungal communities. Altogether, two out of the five assessed microbial DNA extraction methods (DNeasy PowerSoil Pro Kit and E.Z.N.A.® Food DNA Kit) appeared suitable for robust evaluations of the microbial communities in wine samples. Consequently, this study provides robust tools for facilitated upcoming studies to further investigate microbial communities during winemaking using high-throughput sequencing.
高通量测序方法,其目标是一个分类上的区别位点,允许深入了解微生物群落的组成。虽然微生物历来是通过在人工培养基上培养来研究的,但这种方法存在很强的局限性,因为只有有限比例的微生物可以在体外培养。在酿酒和酿酒过程中,这个陷阱显得更加有限,在发酵过程的不同阶段,可以观察到各种各样的霉菌、酵母和细菌。因此,对这些动态群落的理解,以及它们如何影响葡萄酒质量,是未来酿酒学的一个重大挑战。到目前为止,虽然高通量测序已经可以用于真菌群落的研究,但还没有针对微生物脱氧核糖核酸(DNA)在微生物基质中提取性能的比较研究。本研究的目的是提供五种选择的提取方法的比较,分析了两种葡萄汁和发酵葡萄汁,以及成品葡萄酒。根据提取率、提取DNA的纯度和下游分子分析的稳健性,包括聚合酶链反应和真菌群落的高通量测序,对这些方法进行了评估。总的来说,五种评估的微生物DNA提取方法中的两种(dnasy PowerSoil Pro Kit和E.Z.N.A.®Food DNA Kit)似乎适合于对葡萄酒样品中的微生物群落进行可靠的评估。因此,本研究为未来的研究提供了强大的工具,以促进利用高通量测序进一步研究酿酒过程中的微生物群落。
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.