{"title":"Characterization and analysis of the promoter region of monodehydroascorbate reductase 4 (CpMDAR4) in papaya.","authors":"Dessireé Zerpa-Catanho, Steven J Clough, Ray Ming","doi":"10.1007/s00497-022-00447-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Differential spatial and temporal expression patterns due to regulatory cis-elements and two different isoforms are detected among CpMDAR4 alleles in papaya. The aim of this research was to study the effects of cis-element differences between the X, Y and Y<sup>h</sup> alleles on the expression of CpMDAR4, a potential candidate gene for sex differentiation in papaya, using a transcriptional reporter system in a model species Arabidopsis thaliana. Possible effects of a retrotransposon insertion in the Y and Y<sup>h</sup> alleles on the transcription and expression of CpMDAR4 alleles in papaya flowers were also examined. When comparing promoters and cis-regulatory elements among genes in the non-recombining region of the sex chromosomes, paired genes exhibited differences. Our results showed that differences in the promoter sequences of the CpMDAR4 alleles drove the expression of a reporter gene to different flower tissues in Arabidopsis. β-glucuronidase staining analysis of T<sub>2</sub> and T<sub>3</sub> lines for constructs containing 5' deletions of native Y and Y<sup>h</sup> allele promoters showed the loss of specific expression of the reporter gene in the anthers, confirming the existence and location of cis-regulatory element POLLEN1LELAT52. The expression analysis of CpMDAR4 alleles in papaya flowers also showed that all alleles are actively expressed in different flower tissues, with the existence of a shorter truncated isoform, with unknown function, for the Y and Y<sup>h</sup> alleles due to an LTR-RT insertion in the Y and Y<sup>h</sup> chromosomes. The observed expression patterns in Arabidopsis thaliana flowers and the expression patterns of CpMDAR4 alleles in papaya flowers suggest that MDAR4 might have a role on development of reproductive organs in papaya, and that it constitutes an important candidate for sex differentiation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-022-00447-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Differential spatial and temporal expression patterns due to regulatory cis-elements and two different isoforms are detected among CpMDAR4 alleles in papaya. The aim of this research was to study the effects of cis-element differences between the X, Y and Yh alleles on the expression of CpMDAR4, a potential candidate gene for sex differentiation in papaya, using a transcriptional reporter system in a model species Arabidopsis thaliana. Possible effects of a retrotransposon insertion in the Y and Yh alleles on the transcription and expression of CpMDAR4 alleles in papaya flowers were also examined. When comparing promoters and cis-regulatory elements among genes in the non-recombining region of the sex chromosomes, paired genes exhibited differences. Our results showed that differences in the promoter sequences of the CpMDAR4 alleles drove the expression of a reporter gene to different flower tissues in Arabidopsis. β-glucuronidase staining analysis of T2 and T3 lines for constructs containing 5' deletions of native Y and Yh allele promoters showed the loss of specific expression of the reporter gene in the anthers, confirming the existence and location of cis-regulatory element POLLEN1LELAT52. The expression analysis of CpMDAR4 alleles in papaya flowers also showed that all alleles are actively expressed in different flower tissues, with the existence of a shorter truncated isoform, with unknown function, for the Y and Yh alleles due to an LTR-RT insertion in the Y and Yh chromosomes. The observed expression patterns in Arabidopsis thaliana flowers and the expression patterns of CpMDAR4 alleles in papaya flowers suggest that MDAR4 might have a role on development of reproductive organs in papaya, and that it constitutes an important candidate for sex differentiation.