Margherita Tiezzi , Hanqiang Deng , Nicolas Baeyens
{"title":"Endothelial mechanosensing: A forgotten target to treat vascular remodeling in hypertension?","authors":"Margherita Tiezzi , Hanqiang Deng , Nicolas Baeyens","doi":"10.1016/j.bcp.2022.115290","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The endothelium is a mechanosensitive organ whose pleiotropic actions regulate vessel structure to adjust tissue perfusion. To do so, it possesses ion channels, receptor complexes, and signaling pathways responding to blood flow, whose activation will either maintain vascular integrity and quiescence or, on the contrary, remodel the vessel's structure in both health and disease. Recent studies have demonstrated the crucial role of endothelial inflammation, endothelial to mesenchymal transition (EndMT), and perturbed hemodynamics in the progression of pulmonary arterial hypertension and </span>essential hypertension<span>. These two distinct diseases share some common mechanistic cues, pointing towards new potential therapeutic approaches to treat them. In this review, we summarize these common mechanisms to map future drug development strategies targeting flow sensing mechanisms and </span></span>vascular remodeling.</p></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"206 ","pages":"Article 115290"},"PeriodicalIF":5.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295222003847","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1
Abstract
The endothelium is a mechanosensitive organ whose pleiotropic actions regulate vessel structure to adjust tissue perfusion. To do so, it possesses ion channels, receptor complexes, and signaling pathways responding to blood flow, whose activation will either maintain vascular integrity and quiescence or, on the contrary, remodel the vessel's structure in both health and disease. Recent studies have demonstrated the crucial role of endothelial inflammation, endothelial to mesenchymal transition (EndMT), and perturbed hemodynamics in the progression of pulmonary arterial hypertension and essential hypertension. These two distinct diseases share some common mechanistic cues, pointing towards new potential therapeutic approaches to treat them. In this review, we summarize these common mechanisms to map future drug development strategies targeting flow sensing mechanisms and vascular remodeling.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.