{"title":"Regulation of Wnt signaling by non-coding RNAs during osteoblast differentiation","authors":"I. Saranya, R.L. Akshaya, N. Selvamurugan","doi":"10.1016/j.diff.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Bone is a rigid, mineralized connective tissue that constitutes part of the skeleton in most vertebrate animals. Bone remodeling is a complex process that involves the coordination of ossification and </span>bone resorption activities by osteoblasts and </span>osteoclasts<span>, respectively, resulting in maintaining bone mass. This process involves several growth factors/cytokines and hormones regulating the various signaling pathways<span>. Wnt is one of the major molecular signaling pathways that positively regulate the osteogenic differentiation of mesenchymal stem cells. Dysregulation in the Wnt signaling<span> leads to serious bone-related disorders like osteoporosis and osteosclerosis. Recently, several studies reported the critical role of non-coding RNAs (ncRNAs), including microRNAs<span><span><span>, long ncRNAs, and </span>circular RNAs, in the regulation of bone </span>homeostasis via modulating the Wnt signaling cascade. This review summarizes the importance of such ncRNAs in mediating the Wnt cascade and its effect on osteoblast differentiation. Understanding the regulatory role of these ncRNAs would serve as a novel therapeutic strategy for treating bone-related disorders.</span></span></span></span></p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"128 ","pages":"Pages 57-66"},"PeriodicalIF":2.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468122000779","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Bone is a rigid, mineralized connective tissue that constitutes part of the skeleton in most vertebrate animals. Bone remodeling is a complex process that involves the coordination of ossification and bone resorption activities by osteoblasts and osteoclasts, respectively, resulting in maintaining bone mass. This process involves several growth factors/cytokines and hormones regulating the various signaling pathways. Wnt is one of the major molecular signaling pathways that positively regulate the osteogenic differentiation of mesenchymal stem cells. Dysregulation in the Wnt signaling leads to serious bone-related disorders like osteoporosis and osteosclerosis. Recently, several studies reported the critical role of non-coding RNAs (ncRNAs), including microRNAs, long ncRNAs, and circular RNAs, in the regulation of bone homeostasis via modulating the Wnt signaling cascade. This review summarizes the importance of such ncRNAs in mediating the Wnt cascade and its effect on osteoblast differentiation. Understanding the regulatory role of these ncRNAs would serve as a novel therapeutic strategy for treating bone-related disorders.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.