{"title":"Impact of rapid centrifugation on routine coagulation assays in South Africa.","authors":"Reola Haripersadh, Dashini Pillay, Nadine Rapiti","doi":"10.4102/ajlm.v11i1.1901","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The recommendation for coagulation blood samples is to centrifuge at 4000 revolutions per minute (rpm) for 15 min to produce platelet-poor plasma before analysis. Rapid centrifugation, defined as centrifuging samples at higher speeds for shorter durations, could potentially reduce turn-around times (TAT), provided sample integrity is maintained.</p><p><strong>Objective: </strong>This study assessed the impact of rapid centrifugation on routine coagulation assay results.</p><p><strong>Methods: </strong>Blood samples were collected from volunteers at Inkosi Albert Luthuli Central Hospital and King Edward VIII Hospital, Durban, KwaZulu-Natal, South Africa, from September to November 2021. Samples were centrifuged using Method A, the current standard (4000 rpm/15 min), Method B (4000 rpm/10 min), Method C (5000 rpm/10 min) and Method D (5000 rpm/5 min). Platelet count, prothrombin time, activated partial thromboplastin time, thrombin time (TT), fibrinogen and D-dimer levels were analysed and results from Methods B, C and D compared to reference Method A.</p><p><strong>Results: </strong>Platelet-poor plasma was obtained from all samples (<i>n</i> = 60) using Methods A and B, and from 33/60 (55%) samples using Methods C and D. Differences between Method A and Methods C and D for normal prothrombin time, normal D-dimer and abnormal TT results were statistically significant. Prothrombin time results correlated strongly across all methods, while TT and D-dimer results correlated poorly. Activated partial thromboplastin time and fibrinogen results showed no significant differences across all methods.</p><p><strong>Conclusion: </strong>Rapid centrifugation at 4000 rpm/10 min (Method B) showed results consistent with the reference method. This method could potentially reduce the overall TAT for routine coagulation assays.</p>","PeriodicalId":45412,"journal":{"name":"African Journal of Laboratory Medicine","volume":"11 1","pages":"1901"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Laboratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4102/ajlm.v11i1.1901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The recommendation for coagulation blood samples is to centrifuge at 4000 revolutions per minute (rpm) for 15 min to produce platelet-poor plasma before analysis. Rapid centrifugation, defined as centrifuging samples at higher speeds for shorter durations, could potentially reduce turn-around times (TAT), provided sample integrity is maintained.
Objective: This study assessed the impact of rapid centrifugation on routine coagulation assay results.
Methods: Blood samples were collected from volunteers at Inkosi Albert Luthuli Central Hospital and King Edward VIII Hospital, Durban, KwaZulu-Natal, South Africa, from September to November 2021. Samples were centrifuged using Method A, the current standard (4000 rpm/15 min), Method B (4000 rpm/10 min), Method C (5000 rpm/10 min) and Method D (5000 rpm/5 min). Platelet count, prothrombin time, activated partial thromboplastin time, thrombin time (TT), fibrinogen and D-dimer levels were analysed and results from Methods B, C and D compared to reference Method A.
Results: Platelet-poor plasma was obtained from all samples (n = 60) using Methods A and B, and from 33/60 (55%) samples using Methods C and D. Differences between Method A and Methods C and D for normal prothrombin time, normal D-dimer and abnormal TT results were statistically significant. Prothrombin time results correlated strongly across all methods, while TT and D-dimer results correlated poorly. Activated partial thromboplastin time and fibrinogen results showed no significant differences across all methods.
Conclusion: Rapid centrifugation at 4000 rpm/10 min (Method B) showed results consistent with the reference method. This method could potentially reduce the overall TAT for routine coagulation assays.
期刊介绍:
The African Journal of Laboratory Medicine, the official journal of ASLM, focuses on the role of the laboratory and its professionals in the clinical and public healthcare sectors,and is specifically based on an African frame of reference. Emphasis is on all aspects that promote and contribute to the laboratory medicine practices of Africa. This includes, amongst others: laboratories, biomedical scientists and clinicians, medical community, public health officials and policy makers, laboratory systems and policies (translation of laboratory knowledge, practices and technologies in clinical care), interfaces of laboratory with medical science, laboratory-based epidemiology, laboratory investigations, evidence-based effectiveness in real world (actual) settings.