Leander van Eekelen, Geert Litjens, Konnie M Hebeda
{"title":"Artificial Intelligence in Bone Marrow Histological Diagnostics: Potential Applications and Challenges.","authors":"Leander van Eekelen, Geert Litjens, Konnie M Hebeda","doi":"10.1159/000529701","DOIUrl":null,"url":null,"abstract":"<p><p>The expanding digitalization of routine diagnostic histological slides holds a potential to apply artificial intelligence (AI) to pathology, including bone marrow (BM) histology. In this perspective, we describe potential tasks in diagnostics that can be supported, investigations that can be guided, and questions that can be answered by the future application of AI on whole-slide images of BM biopsies. These range from characterization of cell lineages and quantification of cells and stromal structures to disease prediction. First glimpses show an exciting potential to detect subtle phenotypic changes with AI that are due to specific genotypes. The discussion is illustrated by examples of current AI research using BM biopsy slides. In addition, we briefly discuss current challenges for implementation of AI-supported diagnostics.</p>","PeriodicalId":19805,"journal":{"name":"Pathobiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000529701","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The expanding digitalization of routine diagnostic histological slides holds a potential to apply artificial intelligence (AI) to pathology, including bone marrow (BM) histology. In this perspective, we describe potential tasks in diagnostics that can be supported, investigations that can be guided, and questions that can be answered by the future application of AI on whole-slide images of BM biopsies. These range from characterization of cell lineages and quantification of cells and stromal structures to disease prediction. First glimpses show an exciting potential to detect subtle phenotypic changes with AI that are due to specific genotypes. The discussion is illustrated by examples of current AI research using BM biopsy slides. In addition, we briefly discuss current challenges for implementation of AI-supported diagnostics.
期刊介绍:
''Pathobiology'' offers a valuable platform for the publication of high-quality original research into the mechanisms underlying human disease. Aiming to serve as a bridge between basic biomedical research and clinical medicine, the journal welcomes articles from scientific areas such as pathology, oncology, anatomy, virology, internal medicine, surgery, cell and molecular biology, and immunology. Published bimonthly, ''Pathobiology'' features original research papers and reviews on translational research. The journal offers the possibility to publish proceedings of meetings dedicated to one particular topic.