Vinicius F de Paula, Lidieli P Tardelli, Sandra L Amaral
{"title":"Dexamethasone-Induced Arterial Stiffening Is Attenuated by Training due to a Better Balance Between Aortic Collagen and Elastin Levels.","authors":"Vinicius F de Paula, Lidieli P Tardelli, Sandra L Amaral","doi":"10.1007/s10557-023-07438-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Although the cardioprotective benefits of exercise training are well known, the effects of training on dexamethasone (DEX)-induced arterial stiffness are still unclear. This study was aimed at investigating the mechanisms induced by training to prevent DEX-induced arterial stiffness.</p><p><strong>Methods: </strong>Wistar rats were allocated into 4 groups and submitted to combined training (aerobic and resistance exercises, on alternate days, 60% of maximal capacity, for 74 d) or were kept sedentary: sedentary control rats (SC), DEX-treated sedentary rats (DS), combined training control (CT), and DEX-treated trained rats (DT). During the last 14 d, rats were treated with DEX (50 μg/kg per body weight, per day, s.c.) or saline.</p><p><strong>Results: </strong>DEX increased PWV (+44% vs +5% m/s, for DS vs SC, p<0.001) and increased aortic COL 3 protein level (+75%) in DS. In addition, PWV was correlated with COL3 levels (r=0.682, p<0.0001). Aortic elastin and COL1 protein levels remained unchanged. On the other hand, the trained and treated groups showed lower PWV values (-27% m/s, p<0.001) vs DS and lower values of aortic and femoral COL3 compared with DS.</p><p><strong>Conclusion: </strong>As DEX is widely used in several situations, the clinical relevance of this study is that the maintenance of good physical capacity throughout life can be crucial to alleviate some of its side effects, such as arterial stiffness.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":"693-703"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-023-07438-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Although the cardioprotective benefits of exercise training are well known, the effects of training on dexamethasone (DEX)-induced arterial stiffness are still unclear. This study was aimed at investigating the mechanisms induced by training to prevent DEX-induced arterial stiffness.
Methods: Wistar rats were allocated into 4 groups and submitted to combined training (aerobic and resistance exercises, on alternate days, 60% of maximal capacity, for 74 d) or were kept sedentary: sedentary control rats (SC), DEX-treated sedentary rats (DS), combined training control (CT), and DEX-treated trained rats (DT). During the last 14 d, rats were treated with DEX (50 μg/kg per body weight, per day, s.c.) or saline.
Results: DEX increased PWV (+44% vs +5% m/s, for DS vs SC, p<0.001) and increased aortic COL 3 protein level (+75%) in DS. In addition, PWV was correlated with COL3 levels (r=0.682, p<0.0001). Aortic elastin and COL1 protein levels remained unchanged. On the other hand, the trained and treated groups showed lower PWV values (-27% m/s, p<0.001) vs DS and lower values of aortic and femoral COL3 compared with DS.
Conclusion: As DEX is widely used in several situations, the clinical relevance of this study is that the maintenance of good physical capacity throughout life can be crucial to alleviate some of its side effects, such as arterial stiffness.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.