Emmanuel W Bumunang, Tim A McAllister, Rodrigo Ortega Polo, Collins N Ateba, Kim Stanford, Jared Schlechte, Matthew Walker, Kellie MacLean, Yan D Niu
{"title":"Genomic Profiling of Non-O157 Shiga Toxigenic <i>Escherichia coli</i>-Infecting Bacteriophages from South Africa.","authors":"Emmanuel W Bumunang, Tim A McAllister, Rodrigo Ortega Polo, Collins N Ateba, Kim Stanford, Jared Schlechte, Matthew Walker, Kellie MacLean, Yan D Niu","doi":"10.1089/phage.2022.0003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-O157 Shiga toxigenic <i>Escherichia coli</i> (STEC) are one of the most important food and waterborne pathogens worldwide. Although bacteriophages (phages) have been used for the biocontrol of these pathogens, a comprehensive understanding of the genetic characteristics and lifestyle of potentially effective candidate phages is lacking.</p><p><strong>Materials and methods: </strong>In this study, 10 non-O157-infecting phages previously isolated from feedlot cattle and dairy farms in the North-West province of South Africa were sequenced, and their genomes were analyzed.</p><p><strong>Results: </strong>Comparative genomics and proteomics revealed that the phages were closely related to other <i>E. coli</i>-infecting <i>Tunaviruses</i>, <i>Seuratviruses</i>, <i>Carltongylesviruses</i>, <i>Tequatroviruses</i>, and <i>Mosigviruses</i> from the National Center for Biotechnology Information GenBank database. Phages lacked integrases associated with a lysogenic cycle and genes associated with antibiotic resistance and Shiga toxins.</p><p><strong>Conclusions: </strong>Comparative genomic analysis identified a diversity of unique non-O157-infecting phages, which could be used to mitigate the abundance of various non-O157 STEC serogroups without safety concerns.</p>","PeriodicalId":74428,"journal":{"name":"PHAGE (New Rochelle, N.Y.)","volume":"3 4","pages":"221-230"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917312/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHAGE (New Rochelle, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/phage.2022.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Background: Non-O157 Shiga toxigenic Escherichia coli (STEC) are one of the most important food and waterborne pathogens worldwide. Although bacteriophages (phages) have been used for the biocontrol of these pathogens, a comprehensive understanding of the genetic characteristics and lifestyle of potentially effective candidate phages is lacking.
Materials and methods: In this study, 10 non-O157-infecting phages previously isolated from feedlot cattle and dairy farms in the North-West province of South Africa were sequenced, and their genomes were analyzed.
Results: Comparative genomics and proteomics revealed that the phages were closely related to other E. coli-infecting Tunaviruses, Seuratviruses, Carltongylesviruses, Tequatroviruses, and Mosigviruses from the National Center for Biotechnology Information GenBank database. Phages lacked integrases associated with a lysogenic cycle and genes associated with antibiotic resistance and Shiga toxins.
Conclusions: Comparative genomic analysis identified a diversity of unique non-O157-infecting phages, which could be used to mitigate the abundance of various non-O157 STEC serogroups without safety concerns.