Xiao-Jun Wu, Qin-Qin Shu, Bin Wang, Lan Dong, Bin Hao
{"title":"Acetoacetate Improves Memory in Alzheimer's Mice via Promoting Brain-Derived Neurotrophic Factor and Inhibiting Inflammation.","authors":"Xiao-Jun Wu, Qin-Qin Shu, Bin Wang, Lan Dong, Bin Hao","doi":"10.1177/15333175221124949","DOIUrl":null,"url":null,"abstract":"<p><p>The ketone bodies, especially the β-hydroxybutyrate, had been shown to modulate the function of the central nervous system and prevent the pathological progression of Alzheimer's disease (AD). However, little is known about the role of acetoacetate in the AD brain. Thus, we intraventricularly injected acetoacetate into familial AD mice (APPSWE) for 14 days and monitored their memory and biochemical changes. During the behavior test, acetoacetate at 100 mg/kg led to significant improvement in both Y-maze and novel object recognition tests (NORTs) (both P < .05), indicating ameliorating spatial and recognition memory, respectively. Biomedical tests revealed two mechanisms were involved. Firstly, acetoacetate inhibited the GPR43-pERK pathway, which led to apparent inhibition in tumor necrosis factor-α and Interleukin-6 expression in the hippocampus in a concentration-dependent manner. Secondarily, acetoacetate stimulated the expression of hippocampal brain-derived neurotrophic factor (BDNF). We concluded that acetoacetate could ameliorate AD symptoms and exhibited promising features as a therapeutic for AD.</p>","PeriodicalId":50816,"journal":{"name":"American Journal of Alzheimers Disease and Other Dementias","volume":"37 ","pages":"15333175221124949"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Alzheimers Disease and Other Dementias","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15333175221124949","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ketone bodies, especially the β-hydroxybutyrate, had been shown to modulate the function of the central nervous system and prevent the pathological progression of Alzheimer's disease (AD). However, little is known about the role of acetoacetate in the AD brain. Thus, we intraventricularly injected acetoacetate into familial AD mice (APPSWE) for 14 days and monitored their memory and biochemical changes. During the behavior test, acetoacetate at 100 mg/kg led to significant improvement in both Y-maze and novel object recognition tests (NORTs) (both P < .05), indicating ameliorating spatial and recognition memory, respectively. Biomedical tests revealed two mechanisms were involved. Firstly, acetoacetate inhibited the GPR43-pERK pathway, which led to apparent inhibition in tumor necrosis factor-α and Interleukin-6 expression in the hippocampus in a concentration-dependent manner. Secondarily, acetoacetate stimulated the expression of hippocampal brain-derived neurotrophic factor (BDNF). We concluded that acetoacetate could ameliorate AD symptoms and exhibited promising features as a therapeutic for AD.
期刊介绍:
American Journal of Alzheimer''s Disease and other Dementias® (AJADD) is for professionals on the frontlines of Alzheimer''s care, dementia, and clinical depression--especially physicians, nurses, psychiatrists, administrators, and other healthcare specialists who manage patients with dementias and their families. This journal is a member of the Committee on Publication Ethics (COPE).