Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2022-11-21 DOI:10.1088/1478-3975/aca0d8
L Perrin, B Gligorijevic
{"title":"Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer.","authors":"L Perrin, B Gligorijevic","doi":"10.1088/1478-3975/aca0d8","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer invasion and metastasis require remodeling of the adjacent extracellular matrix (ECM). In this mini review, we will cover the mechanisms of proteolytic degradation and the mechanical remodeling of the ECM by cancer cells, with a focus on invadopodia. Invadopodia are membrane protrusions unique to cancer cells, characterized by an actin core and by the focal degradation of ECM via matrix metalloproteases (MMPs). While ECM can also be remodeled, at lower levels, by focal adhesions, or internal collagen digestion, invadopodia are now recognized as the major mechanism for MMP-dependent pericellular ECM degradation by cancer cells. Recent evidence suggests that the completion of epithelial-mesenchymal transition may be dispensable for invadopodia and metastasis, and that invadopodia are required not only for mesenchymal, single cell invasion, but also for collective invasion. During collective invasion, invadopodia was then shown to be located in leader cells, allowing follower cells to move via cooperation. Collectively, this suggests that invadopodia function may be a requirement not only for later steps of metastasis, but also for early invasion of epithelial cells into the stromal tissue. Over the last decade, invadopodia studies have transitioned into in 3D and<i>in vivo</i>settings, leading to the confirmation of their essential role in metastasis in preclinical animal models. In summary, invadopodia may hold a great potential for individual risk assessment as a prognostic marker for metastasis, as well as a therapeutic target.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942491/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/aca0d8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Cancer invasion and metastasis require remodeling of the adjacent extracellular matrix (ECM). In this mini review, we will cover the mechanisms of proteolytic degradation and the mechanical remodeling of the ECM by cancer cells, with a focus on invadopodia. Invadopodia are membrane protrusions unique to cancer cells, characterized by an actin core and by the focal degradation of ECM via matrix metalloproteases (MMPs). While ECM can also be remodeled, at lower levels, by focal adhesions, or internal collagen digestion, invadopodia are now recognized as the major mechanism for MMP-dependent pericellular ECM degradation by cancer cells. Recent evidence suggests that the completion of epithelial-mesenchymal transition may be dispensable for invadopodia and metastasis, and that invadopodia are required not only for mesenchymal, single cell invasion, but also for collective invasion. During collective invasion, invadopodia was then shown to be located in leader cells, allowing follower cells to move via cooperation. Collectively, this suggests that invadopodia function may be a requirement not only for later steps of metastasis, but also for early invasion of epithelial cells into the stromal tissue. Over the last decade, invadopodia studies have transitioned into in 3D andin vivosettings, leading to the confirmation of their essential role in metastasis in preclinical animal models. In summary, invadopodia may hold a great potential for individual risk assessment as a prognostic marker for metastasis, as well as a therapeutic target.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肿瘤细胞外基质的蛋白水解和机械重塑。
肿瘤的侵袭和转移需要邻近细胞外基质(ECM)的重塑。在这篇简短的综述中,我们将介绍癌细胞对ECM的蛋白水解降解和机械重塑的机制,重点是侵过性。Invadopodia是癌细胞特有的膜突起,其特征是肌动蛋白核心和通过基质金属蛋白酶(MMPs)局部降解ECM。虽然ECM也可以通过局灶粘连或内部胶原消化在较低水平上进行重塑,但目前认为浸润性是癌细胞降解mmp依赖性细胞外ECM的主要机制。最近的证据表明,上皮-间质转化的完成可能是入侵和转移所必需的,并且入侵不仅是间质、单细胞侵袭所必需的,也是集体侵袭所必需的。在集体入侵过程中,invadopodia被证明位于领导细胞中,允许跟随细胞通过合作移动。总的来说,这表明侵过性功能可能不仅是转移后期的必要条件,也是上皮细胞早期侵入间质组织的必要条件。在过去的十年中,侵过体研究已经过渡到三维和活体环境中,从而在临床前动物模型中证实了它们在转移中的重要作用。综上所述,侵过性足可能作为转移的预后标记物和治疗靶点,具有很大的个体风险评估潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
A role of fear on diseased food web model with multiple functional response. Two fitness inference schemes compared using allele frequencies from 1,068,391 sequences sampled in the UK during the COVID-19 pandemic. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. An exactly solvable model for RNA polymerase during the elongation stage. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1