Recent advancements in single dose slow-release devices for prophylactic vaccines.

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2023-01-01 Epub Date: 2022-07-18 DOI:10.1002/wnan.1832
Sayoni Ray, Armando Puente, Nicole F Steinmetz, Jonathan K Pokorski
{"title":"Recent advancements in single dose slow-release devices for prophylactic vaccines.","authors":"Sayoni Ray, Armando Puente, Nicole F Steinmetz, Jonathan K Pokorski","doi":"10.1002/wnan.1832","DOIUrl":null,"url":null,"abstract":"<p><p>Single dose slow-release vaccines herald a new era in vaccine administration. An ideal device for slow-release vaccine delivery would be minimally invasive and self-administered, making these approaches an attractive alternative for mass vaccination programs, particularly during the time of a pandemic. In this review article, we discuss the latest advances in this field, specifically for prophylactic vaccines able to prevent infectious diseases. Recent studies have found that slow-release vaccines elicit better immune responses and often do not require cold chain transportation and storage, thus drastically reducing the cost, streamlining distribution, and improving efficacy. This promise has attracted significant attention, especially when poor patient compliance of the standard multidose vaccine regimes is considered. Single dose slow-release vaccines are the next generation of vaccine tools that could overcome most of the shortcomings of present vaccination programs and be the next platform technology to combat future pandemics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 1","pages":"e1832"},"PeriodicalIF":6.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840709/pdf/nihms-1860386.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1832","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single dose slow-release vaccines herald a new era in vaccine administration. An ideal device for slow-release vaccine delivery would be minimally invasive and self-administered, making these approaches an attractive alternative for mass vaccination programs, particularly during the time of a pandemic. In this review article, we discuss the latest advances in this field, specifically for prophylactic vaccines able to prevent infectious diseases. Recent studies have found that slow-release vaccines elicit better immune responses and often do not require cold chain transportation and storage, thus drastically reducing the cost, streamlining distribution, and improving efficacy. This promise has attracted significant attention, especially when poor patient compliance of the standard multidose vaccine regimes is considered. Single dose slow-release vaccines are the next generation of vaccine tools that could overcome most of the shortcomings of present vaccination programs and be the next platform technology to combat future pandemics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预防性疫苗单剂量缓释装置的最新进展。
单剂缓释疫苗预示着疫苗接种的新纪元。理想的缓释疫苗给药装置应该是微创和自我给药的,这使得这些方法成为大规模疫苗接种计划的一个有吸引力的替代方案,尤其是在大流行时期。在这篇综述文章中,我们将讨论这一领域的最新进展,特别是能够预防传染病的预防性疫苗。最近的研究发现,缓释疫苗能引起更好的免疫反应,而且通常不需要冷链运输和储存,从而大大降低了成本、简化了分发过程并提高了效果。这一前景引起了广泛关注,尤其是考虑到标准多剂量疫苗接种方案的患者依从性较差。单剂缓释疫苗是下一代疫苗工具,可以克服目前疫苗接种计划的大部分缺点,并成为抗击未来流行病的下一个平台技术。本文归类于治疗方法与药物发现 > 新兴技术 可植入材料与外科技术 > 纳米材料与植入物 生物启发纳米材料 > 蛋白质与病毒结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
期刊最新文献
Design and synthesis of bioinspired nanomaterials for biomedical application. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling "detect to treat" opportunities. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1