In vitro effects of combustion generated carbon dots on cellular parameters in healthy and cancerous breast cells.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2022-08-01 DOI:10.1080/17435390.2022.2144775
Nikita Dinger, Valeria Panzetta, Carmela Russo, Paolo Antonio Netti, Mariano Sirignano
{"title":"<i>In vitro</i> effects of combustion generated carbon dots on cellular parameters in healthy and cancerous breast cells.","authors":"Nikita Dinger,&nbsp;Valeria Panzetta,&nbsp;Carmela Russo,&nbsp;Paolo Antonio Netti,&nbsp;Mariano Sirignano","doi":"10.1080/17435390.2022.2144775","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanomaterials are an inventive class of materials with wide applications in state-of-the-art bioimaging and therapeutics. They allow a broad range of tunable and integrated advantages of structural flexibility, chemical and thermal stability, upright electrical conductivity, and the option of scale-up and mass production. In the context of nanomedicine, carbon nanomaterials have been used extensively to mitigate the serious side effects of conventional chemotherapy and also to enable early cancer diagnostics, given their wide range of tunable properties. A class of carbon nanomaterials, called carbon dots (CDs) are small carbon-based nanoparticles and have been a valued discovery due to their photoluminescence, low photobleaching, and high surface area to mass ratio. The process of producing these CDs had so far been a high energy demanding process involving wet chemistry for purification. A one-step tunable production of luminescent CDs from fuel rich combustion reactors was recently presented by our group. In this paper, we explore the effects of these yellow luminescent combustion-generated CDs in MCF7 adenocarcinoma and MCF10a normal breast epithelial cells. We observed that these CDs, also at nontoxic doses, can affect basic cellular functions, such as cell cycle and proliferation; induce substantial changes on the physical parameters of the plasma membrane; and change the overall appearance of a cell in terms of morphology.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"16 6-8","pages":"733-756"},"PeriodicalIF":3.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2022.2144775","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Carbon nanomaterials are an inventive class of materials with wide applications in state-of-the-art bioimaging and therapeutics. They allow a broad range of tunable and integrated advantages of structural flexibility, chemical and thermal stability, upright electrical conductivity, and the option of scale-up and mass production. In the context of nanomedicine, carbon nanomaterials have been used extensively to mitigate the serious side effects of conventional chemotherapy and also to enable early cancer diagnostics, given their wide range of tunable properties. A class of carbon nanomaterials, called carbon dots (CDs) are small carbon-based nanoparticles and have been a valued discovery due to their photoluminescence, low photobleaching, and high surface area to mass ratio. The process of producing these CDs had so far been a high energy demanding process involving wet chemistry for purification. A one-step tunable production of luminescent CDs from fuel rich combustion reactors was recently presented by our group. In this paper, we explore the effects of these yellow luminescent combustion-generated CDs in MCF7 adenocarcinoma and MCF10a normal breast epithelial cells. We observed that these CDs, also at nontoxic doses, can affect basic cellular functions, such as cell cycle and proliferation; induce substantial changes on the physical parameters of the plasma membrane; and change the overall appearance of a cell in terms of morphology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
燃烧产生的碳点对健康和癌乳腺细胞细胞参数的体外影响。
碳纳米材料是一类具有创造性的材料,在最先进的生物成像和治疗中有着广泛的应用。它们具有广泛的可调和综合优势,包括结构灵活性、化学和热稳定性、直立导电性,以及扩大规模和大规模生产的选择。在纳米医学的背景下,碳纳米材料已被广泛用于减轻常规化疗的严重副作用,也可以用于早期癌症诊断,因为它们具有广泛的可调特性。一类碳纳米材料,被称为碳点(CDs),是一种小的碳基纳米颗粒,由于其光致发光、低光漂白和高表面积质量比而成为一种有价值的发现。迄今为止,生产这些cd的过程是一个高能耗的过程,涉及湿化学净化。我们小组最近提出了一种利用富燃料燃烧反应器一步可调地生产发光CDs的方法。在本文中,我们探讨了这些黄色发光燃烧产生的CDs在MCF7腺癌和MCF10a正常乳腺上皮细胞中的作用。我们观察到这些cd,同样在无毒剂量下,可以影响基本的细胞功能,如细胞周期和增殖;引起质膜物理参数的实质性变化;改变细胞的整体形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Environmental toxicity assessment of engineered nanoparticles manifest histo-hemato alterations to fresh water fish. In vivo assessment of topically applied silver nanoparticles on entire cornea: comprehensive FTIR study. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Role of physicochemical properties in silica nanoparticle-mediated immunostimulation. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1