Estimation of genetic components, heterosis and combining ability of elite Pakistani wheat varieties for yield attributing traits and stripe rust response.

IF 0.9 Q3 AGRICULTURE, MULTIDISCIPLINARY Vavilovskii Zhurnal Genetiki i Selektsii Pub Date : 2023-10-01 DOI:10.18699/VJGB-23-72
M S Ahmed, M Qamar, S Waqar, A Naeem, R A Javaid, S K Tanveer, I Hussain
{"title":"Estimation of genetic components, heterosis and combining ability of elite Pakistani wheat varieties for yield attributing traits and stripe rust response.","authors":"M S Ahmed, M Qamar, S Waqar, A Naeem, R A Javaid, S K Tanveer, I Hussain","doi":"10.18699/VJGB-23-72","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat (Triticum aestivum L.) is a staple food and major source of dietary calories in Pakistan. Improving wheat varieties with higher grain yield and disease resistance is a prime objective. The knowledge of genetic behaviour of germplasm is key. To achieve this objective, elite wheat varieties were crossed in 4 by 3, line × tester design, and tested in 2019 in a triplicate yield trial to estimate genetic variance, general and specific combining ability, mid-parent heterosis and stripe rust (Puccinia striiformis L.). High grain 3358 kg·ha-1 was recorded in F1 hybrid (ZRG-79 × PAK-13). Analysis of variance (ANOVA) revealed significant genotypic variance in grain yield. Broad sense heritability (H2) was recorded in the range of 28 to 100 %. General combining ability (GCA) significant for grain yield in parents except FSD-08 and PS-05 was recorded, while specific combining ability (SCA) was recorded to be highly significant for grain yield only in two crosses (ZRG-79 × NR-09 and ZRG-79 × PAK-13). Mid-parent heterosis was estimated in the range of -28 to 62.6 %. Cross combinations ZRG-79 × PAK-13 depicted highly significant mid-parent heterosis (62.6 %). Highly significant correlation was observed among spike length, spikelets per spike, plant height and 1000-grain weight. Rust resistance index was recorded in the range of 0 to 8.5. These findings suggest exploitation of GCA for higher grain yield is important due to the presence of additive gene action and selection in the filial generations will be effective with improved rust resistance, while cross combinations ZRG-79 × PAK-13 high GCA are best suited for hybrid development.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/VJGB-23-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat (Triticum aestivum L.) is a staple food and major source of dietary calories in Pakistan. Improving wheat varieties with higher grain yield and disease resistance is a prime objective. The knowledge of genetic behaviour of germplasm is key. To achieve this objective, elite wheat varieties were crossed in 4 by 3, line × tester design, and tested in 2019 in a triplicate yield trial to estimate genetic variance, general and specific combining ability, mid-parent heterosis and stripe rust (Puccinia striiformis L.). High grain 3358 kg·ha-1 was recorded in F1 hybrid (ZRG-79 × PAK-13). Analysis of variance (ANOVA) revealed significant genotypic variance in grain yield. Broad sense heritability (H2) was recorded in the range of 28 to 100 %. General combining ability (GCA) significant for grain yield in parents except FSD-08 and PS-05 was recorded, while specific combining ability (SCA) was recorded to be highly significant for grain yield only in two crosses (ZRG-79 × NR-09 and ZRG-79 × PAK-13). Mid-parent heterosis was estimated in the range of -28 to 62.6 %. Cross combinations ZRG-79 × PAK-13 depicted highly significant mid-parent heterosis (62.6 %). Highly significant correlation was observed among spike length, spikelets per spike, plant height and 1000-grain weight. Rust resistance index was recorded in the range of 0 to 8.5. These findings suggest exploitation of GCA for higher grain yield is important due to the presence of additive gene action and selection in the filial generations will be effective with improved rust resistance, while cross combinations ZRG-79 × PAK-13 high GCA are best suited for hybrid development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴基斯坦小麦优良品种的遗传成分、杂种优势和配合力对产量性状和条锈病反应的影响
小麦(Triticum aestivum L.)是巴基斯坦的主食和膳食热量的主要来源。改良高产抗病的小麦品种是主要目标。种质资源遗传行为的知识是关键。为了实现这一目标,我们采用4 × 3杂交设计,并在2019年进行了三次产量试验,以评估遗传变异、一般配合力和特定配合力、中亲本杂种优势和条锈病。杂种ZRG-79 × PAK-13的高粒记录为3358 kg·ha-1。方差分析显示,籽粒产量存在显著的基因型差异。广义遗传力(H2)在28% ~ 100%之间。除FSD-08和PS-05外,各亲本的一般配合力(GCA)对产量有显著影响,而特定配合力(SCA)对产量极显著影响的只有ZRG-79 × NR-09和ZRG-79 × PAK-13。中亲本杂种优势估计在- 28% ~ 62.6%之间。杂交组合ZRG-79 × PAK-13中亲本杂种优势显著(62.6%)。穗长、穗粒数、株高和千粒重呈极显著相关。防锈指数在0 ~ 8.5之间。这些结果表明,利用GCA提高产量是重要的,因为在子代中存在加性基因作用和选择将有效提高抗锈病能力,而高GCA的杂交组合ZRG-79 × PAK-13最适合杂交发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Vavilovskii Zhurnal Genetiki i Selektsii
Vavilovskii Zhurnal Genetiki i Selektsii AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
119
审稿时长
8 weeks
期刊介绍: The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.
期刊最新文献
Search for signals of positive selection of circadian rhythm genes PER1, PER2, PER3 in different human populations. Structure and evolution of metapolycentromeres. The effect of T. aestivum chromosomes 1A and 1D on fertility of alloplasmic recombinant (H. vulgare)-T. aestivum lines depending on cytonuclear compatibility. Traces of Paleolithic expansion in the Nivkh gene pool based on data on autosomal SNP and Y chromosome polymorphism. A new leaf pubescence gene, Hl1th , introgressed into bread wheat from Thinopyrum ponticum and its phenotypic manifestation under homoeologous chromosomal substitutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1