Amir Elalouf, Tomer Kedarya, Hadas Elalouf, Ariel Rosenfeld
{"title":"Computational design and evaluation of mRNA- and protein-based conjugate vaccines for influenza A and SARS-CoV-2 viruses.","authors":"Amir Elalouf, Tomer Kedarya, Hadas Elalouf, Ariel Rosenfeld","doi":"10.1186/s43141-023-00574-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Israel confirmed the first case of \"flurona\"-a co-infection of seasonal flu (IAV) and SARS-CoV-2 in an unvaccinated pregnant woman. This twindemic has been confirmed in multiple countries and underscores the importance of managing respiratory viral illnesses.</p><p><strong>Results: </strong>The novel conjugate vaccine was designed by joining four hemagglutinin, three neuraminidase, and four S protein of B-cell epitopes, two hemagglutinin, three neuraminidase, and four S proteins of MHC-I epitopes, and three hemagglutinin, nine neuraminidase, and five S proteins of MHC-II epitopes with linkers and adjuvants. The constructed conjugate vaccine was found stable, non-toxic, non-allergic, and antigenic with 0.6466 scores. The vaccine contained 14.87% alpha helix, 29.85% extended strand, 9.64% beta-turn, and 45.64% random coil, which was modeled to a 3D structure with 94.7% residues in the most favored region of the Ramachandran plot and Z-score of -3.33. The molecular docking of the vaccine with TLR3 represented -1513.9 kcal/mol of binding energy with 39 hydrogen bonds and 514 non-bonded contacts, and 1.582925e-07 of eigenvalue complex. Immune stimulation prediction showed the conjugate vaccine could activate T and B lymphocytes to produce high levels of Th1 cytokines and antibodies.</p><p><strong>Conclusion: </strong>The in silico-designed vaccine against IAV and SARS-CoV-2 showed good population coverage and immune response with predicted T- and B-cell epitopes, favorable molecular docking, Ramachandran plot results, and good protein expression. It fulfilled safety criteria, indicating potential for preclinical studies and experimental clinical trials.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00574-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Israel confirmed the first case of "flurona"-a co-infection of seasonal flu (IAV) and SARS-CoV-2 in an unvaccinated pregnant woman. This twindemic has been confirmed in multiple countries and underscores the importance of managing respiratory viral illnesses.
Results: The novel conjugate vaccine was designed by joining four hemagglutinin, three neuraminidase, and four S protein of B-cell epitopes, two hemagglutinin, three neuraminidase, and four S proteins of MHC-I epitopes, and three hemagglutinin, nine neuraminidase, and five S proteins of MHC-II epitopes with linkers and adjuvants. The constructed conjugate vaccine was found stable, non-toxic, non-allergic, and antigenic with 0.6466 scores. The vaccine contained 14.87% alpha helix, 29.85% extended strand, 9.64% beta-turn, and 45.64% random coil, which was modeled to a 3D structure with 94.7% residues in the most favored region of the Ramachandran plot and Z-score of -3.33. The molecular docking of the vaccine with TLR3 represented -1513.9 kcal/mol of binding energy with 39 hydrogen bonds and 514 non-bonded contacts, and 1.582925e-07 of eigenvalue complex. Immune stimulation prediction showed the conjugate vaccine could activate T and B lymphocytes to produce high levels of Th1 cytokines and antibodies.
Conclusion: The in silico-designed vaccine against IAV and SARS-CoV-2 showed good population coverage and immune response with predicted T- and B-cell epitopes, favorable molecular docking, Ramachandran plot results, and good protein expression. It fulfilled safety criteria, indicating potential for preclinical studies and experimental clinical trials.