Phenotypic maps for precision medicine: a promising systems biology tool for assessing therapy response and resistance at a personalized level.

Frontiers in network physiology Pub Date : 2023-10-25 eCollection Date: 2023-01-01 DOI:10.3389/fnetp.2023.1256104
Sayantan Bhattacharyya, Shafqat F Ehsan, Loukia G Karacosta
{"title":"Phenotypic maps for precision medicine: a promising systems biology tool for assessing therapy response and resistance at a personalized level.","authors":"Sayantan Bhattacharyya, Shafqat F Ehsan, Loukia G Karacosta","doi":"10.3389/fnetp.2023.1256104","DOIUrl":null,"url":null,"abstract":"<p><p>In this perspective we discuss how tumor heterogeneity and therapy resistance necessitate a focus on more personalized approaches, prompting a shift toward precision medicine. At the heart of the shift towards personalized medicine, omics-driven systems biology becomes a driving force as it leverages high-throughput technologies and novel bioinformatics tools. These enable the creation of systems-based maps, providing a comprehensive view of individual tumor's functional plasticity. We highlight the innovative PHENOSTAMP program, which leverages high-dimensional data to construct a visually intuitive and user-friendly map. This map was created to encapsulate complex transitional states in cancer cells, such as Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-Epithelial Transition (MET), offering a visually intuitive way to understand disease progression and therapeutic responses at single-cell resolution in relation to EMT-related single-cell phenotypes. Most importantly, PHENOSTAMP functions as a reference map, which allows researchers and clinicians to assess one clinical specimen at a time in relation to their phenotypic heterogeneity, setting the foundation on constructing phenotypic maps for personalized medicine. This perspective argues that such dynamic predictive maps could also catalyze the development of personalized cancer treatment. They hold the potential to transform our understanding of cancer biology, providing a foundation for a future where therapy is tailored to each patient's unique molecular and cellular tumor profile. As our knowledge of cancer expands, these maps can be continually refined, ensuring they remain a valuable tool in precision oncology.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1256104"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1256104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this perspective we discuss how tumor heterogeneity and therapy resistance necessitate a focus on more personalized approaches, prompting a shift toward precision medicine. At the heart of the shift towards personalized medicine, omics-driven systems biology becomes a driving force as it leverages high-throughput technologies and novel bioinformatics tools. These enable the creation of systems-based maps, providing a comprehensive view of individual tumor's functional plasticity. We highlight the innovative PHENOSTAMP program, which leverages high-dimensional data to construct a visually intuitive and user-friendly map. This map was created to encapsulate complex transitional states in cancer cells, such as Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-Epithelial Transition (MET), offering a visually intuitive way to understand disease progression and therapeutic responses at single-cell resolution in relation to EMT-related single-cell phenotypes. Most importantly, PHENOSTAMP functions as a reference map, which allows researchers and clinicians to assess one clinical specimen at a time in relation to their phenotypic heterogeneity, setting the foundation on constructing phenotypic maps for personalized medicine. This perspective argues that such dynamic predictive maps could also catalyze the development of personalized cancer treatment. They hold the potential to transform our understanding of cancer biology, providing a foundation for a future where therapy is tailored to each patient's unique molecular and cellular tumor profile. As our knowledge of cancer expands, these maps can be continually refined, ensuring they remain a valuable tool in precision oncology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精准医学的表型图谱:在个性化水平上评估治疗反应和耐药性的一个有前途的系统生物学工具。
从这个角度来看,我们讨论了肿瘤异质性和治疗耐药性如何需要关注更个性化的方法,从而促使向精准医学的转变。在向个性化医疗转变的核心,组学驱动的系统生物学成为一股驱动力,因为它利用了高通量技术和新型生物信息学工具。这些能够创建基于系统的地图,提供单个肿瘤功能可塑性的全面视图。我们重点介绍了创新的PHENOSTAMP程序,该程序利用高维数据构建视觉上直观且用户友好的地图。该图谱的创建是为了概括癌细胞中复杂的过渡状态,如上皮-间充质转化(EMT)和间充质-上皮转化(MET),提供了一种直观的方法来了解与EMT相关的单细胞表型相关的疾病进展和单细胞治疗反应。最重要的是,PHENOSTAMP作为参考图谱,允许研究人员和临床医生一次评估一个临床标本的表型异质性,为构建个性化医疗的表型图谱奠定基础。这一观点认为,这种动态预测地图也可以促进个性化癌症治疗的发展。它们有可能改变我们对癌症生物学的理解,为未来根据每个患者独特的分子和细胞肿瘤特征量身定制治疗奠定基础。随着我们对癌症知识的扩展,这些地图可以不断地改进,确保它们仍然是精确肿瘤学的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. Significant nocturnal wakefulness after sleep onset in metabolic dysfunction-associated steatotic liver disease. Networks through the lens of high-frequency oscillations. Constructing representative group networks from tractography: lessons from a dynamical approach. Physiological signal analysis and open science using the Julia language and associated software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1