Substance abuse and neurotransmission.

Q1 Pharmacology, Toxicology and Pharmaceutics Advances in pharmacology Pub Date : 2022-01-01 Epub Date: 2022-01-17 DOI:10.1016/bs.apha.2021.10.007
Sarah Davis, Jun Zhu
{"title":"Substance abuse and neurotransmission.","authors":"Sarah Davis, Jun Zhu","doi":"10.1016/bs.apha.2021.10.007","DOIUrl":null,"url":null,"abstract":"<p><p>The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"93 ","pages":"403-441"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2021.10.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
药物滥用与神经传递。
在过去十年中,药物滥用症患者人数持续上升;特别是在 COVID-19 大流行期间,与药物过量相关的死亡人数急剧增加。在影像学和神经心理学表现测试的支持下,临床观察结果表明,药物滥用导致的大脑神经递质失调对于滥用药物成瘾性的形成和表现至关重要。最近的科学进步使人们能够更好地了解介导药物滥用和成瘾的神经生物学过程。本章介绍了过去的经典概念以及我们对可卡因、苯丙胺、阿片类药物、酒精和尼古丁如何改变多种神经递质系统的最新认识进展,而这些神经递质系统又是如何促成与每种药物相关的行为的。此外,我们还讨论了 HIV-1 或 COVID-19 与药物滥用对神经递质和神经生物学途径的交互影响。最后,我们将介绍药物滥用障碍的药物治疗开发策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in pharmacology
Advances in pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
9.10
自引率
0.00%
发文量
45
期刊最新文献
Drug discovery strategy for TAK-418, a specific inhibitor of LSD1 enzyme activity, as a novel therapy for autism. Evolution of D-amino acid oxidase inhibitors: From concept to clinic. Inhibition of brain glutamate carboxypeptidase II (GCPII) to enhance cognitive function. Modulatory and protective effects of prolyl hydroxylase domain inhibitors in the central nervous system. Neutral sphingomyelinase 2: A promising drug target for CNS disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1