TNF-α Regulates the Glucocorticoid Receptor Alpha Expression in Human Nasal Epithelial Cells Via p65-NF-κb and p38-MAPK Signaling Pathways.

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Iranian Journal of Biotechnology Pub Date : 2023-01-01 DOI:10.30498/ijb.2022.298590.3117
Yongquan Jiang, Bin Liu, Ximing Bao, Pei Zhou, Jiping Li
{"title":"TNF-α Regulates the Glucocorticoid Receptor Alpha Expression in Human Nasal Epithelial Cells Via p65-NF-κb and p38-MAPK Signaling Pathways.","authors":"Yongquan Jiang,&nbsp;Bin Liu,&nbsp;Ximing Bao,&nbsp;Pei Zhou,&nbsp;Jiping Li","doi":"10.30498/ijb.2022.298590.3117","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tumor necrosis factor (TNF)-α induces changes in the glucocorticoid receptor (GR) isoforms' expression in human nasal epithelial cells (HNECs) in chronic rhinosinusitis (CRS).</p><p><strong>Objective: </strong>However, the underlying mechanism of TNF-α induced GR isoforms' expression in HNECs remains unclear. Here, we explored changes in inflammatory cytokines and glucocorticoid receptor alpha isoform (GRα) expression in HNECs.</p><p><strong>Materials and methods: </strong>To explore the expression of TNF-α in nasal polyps and nasal mucosa of CRS, fluorescence immunohistochemical analysis was employed. To investigate changes in inflammatory cytokines and GRα expression in HNECs, RT-PCR and western blotting were performed following the cells' incubation with TNF-α. Cells were pretreated with the nuclear factor-κB gene binding (NF-κB) inhibitor QNZ, the p38 inhibitor SB203580, and dexamethasone for one hour, then a TNF-α. Western blotting, RT-PCR, and immunofluorescence had been utilized for the cells' analysis and the ANOVA for the data analysis.</p><p><strong>Results: </strong>The TNF-α fluorescence intensity was mainly distributed in nasal epithelial cells of nasal tissues. TNF-α prominently inhibited the expression of <i>GRα</i> mRNA from 6 to 24 h in HNECs. GRα protein was decreased from 12 to 24 h. Treatment with QNZ, SB203580, or dexamethasone inhibited the <i>TNF-α</i> and <i>interleukin</i> <i>(IL)-6</i> mRNA expression and increased the <i>GRα</i> levels.</p><p><strong>Conclusion: </strong>TNF-α induced changes in the GR isoforms' expression in HNECs, and it was mediated through p65-NF-κB and p38-MAPK signal transduction pathways, which could be considered a promising neutrophilic CRS treatment.</p>","PeriodicalId":14492,"journal":{"name":"Iranian Journal of Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/0e/IJB-21-e3117.PMC9938934.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30498/ijb.2022.298590.3117","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Tumor necrosis factor (TNF)-α induces changes in the glucocorticoid receptor (GR) isoforms' expression in human nasal epithelial cells (HNECs) in chronic rhinosinusitis (CRS).

Objective: However, the underlying mechanism of TNF-α induced GR isoforms' expression in HNECs remains unclear. Here, we explored changes in inflammatory cytokines and glucocorticoid receptor alpha isoform (GRα) expression in HNECs.

Materials and methods: To explore the expression of TNF-α in nasal polyps and nasal mucosa of CRS, fluorescence immunohistochemical analysis was employed. To investigate changes in inflammatory cytokines and GRα expression in HNECs, RT-PCR and western blotting were performed following the cells' incubation with TNF-α. Cells were pretreated with the nuclear factor-κB gene binding (NF-κB) inhibitor QNZ, the p38 inhibitor SB203580, and dexamethasone for one hour, then a TNF-α. Western blotting, RT-PCR, and immunofluorescence had been utilized for the cells' analysis and the ANOVA for the data analysis.

Results: The TNF-α fluorescence intensity was mainly distributed in nasal epithelial cells of nasal tissues. TNF-α prominently inhibited the expression of GRα mRNA from 6 to 24 h in HNECs. GRα protein was decreased from 12 to 24 h. Treatment with QNZ, SB203580, or dexamethasone inhibited the TNF-α and interleukin (IL)-6 mRNA expression and increased the GRα levels.

Conclusion: TNF-α induced changes in the GR isoforms' expression in HNECs, and it was mediated through p65-NF-κB and p38-MAPK signal transduction pathways, which could be considered a promising neutrophilic CRS treatment.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TNF-α通过p65-NF-κb和p38-MAPK信号通路调控人鼻上皮细胞糖皮质激素受体α的表达
背景:肿瘤坏死因子(TNF)-α诱导慢性鼻窦炎(CRS)患者鼻上皮细胞(HNECs)糖皮质激素受体(GR)亚型表达的变化。目的:然而,TNF-α诱导HNECs中GR亚型表达的潜在机制尚不清楚。在这里,我们探讨了炎症细胞因子和糖皮质激素受体α异构体(GRα)在HNECs中的表达变化。材料与方法:采用荧光免疫组化方法探讨肿瘤坏死因子-α在CRS鼻息肉及鼻黏膜中的表达。采用RT-PCR和western blotting方法观察TNF-α对HNECs细胞炎症因子和GRα表达的影响。用核因子-κB基因结合(NF-κB)抑制剂QNZ、p38抑制剂SB203580和地塞米松预处理细胞1小时,然后用TNF-α。细胞分析采用Western blotting、RT-PCR、免疫荧光分析,数据分析采用方差分析。结果:TNF-α荧光强度主要分布于鼻组织的鼻上皮细胞。TNF-α显著抑制HNECs 6 ~ 24 h GRα mRNA的表达。QNZ、SB203580和地塞米松均能抑制TNF-α和IL -6 mRNA的表达,提高GRα水平。结论:TNF-α通过p65-NF-κB和p38-MAPK信号转导通路介导HNECs中GR亚型的表达变化,可能是一种有前景的中性粒细胞CRS治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Biotechnology
Iranian Journal of Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
2.60
自引率
7.70%
发文量
20
期刊介绍: Iranian Journal of Biotechnology (IJB) is published quarterly by the National Institute of Genetic Engineering and Biotechnology. IJB publishes original scientific research papers in the broad area of Biotechnology such as, Agriculture, Animal and Marine Sciences, Basic Sciences, Bioinformatics, Biosafety and Bioethics, Environment, Industry and Mining and Medical Sciences.
期刊最新文献
In-Silico Method for Predicting Pathogenic Missense Variants Using Online Tools: AURKA Gene as a Model. A Meta-analysis of Transcriptome Data to Investigate the Effect of Soy Isoflavones on Breast Cancer Cell. DNA Methyltransferase Inhibition by RG108 Improves Stemness and Multipotential Differentiation of Human Adipose Tissue-derived Stem Cells. Docking-Based Virtual Screening Method for Selecting Natural Compounds with Synergistic Inhibitory Effects Against Cancer Signalling Pathways Using a Multi-Target Approach. Increased Expression Level of Human Blood Clotting Factor VIII Using NS0 Cell Line as a Host Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1