Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis.

IF 2.4 4区 生物学 Q2 PLANT SCIENCES Plant Reproduction Pub Date : 2023-03-01 DOI:10.1007/s00497-022-00448-1
Kirsten Bomblies
{"title":"Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis.","authors":"Kirsten Bomblies","doi":"10.1007/s00497-022-00448-1","DOIUrl":null,"url":null,"abstract":"<p><p>Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"36 1","pages":"107-124"},"PeriodicalIF":2.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957869/pdf/","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-022-00448-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 13

Abstract

Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习与四个(或更多)探戈:适应多倍体减数分裂的分子基础。
多倍体是由基因组复制引起的,在真核生物的整个历史中都有发生,尽管它在植物中特别常见。由此产生的基因组的大小、杂合性和复杂性的增加可能是一个进化的机会,促进多样化、适应性和功能新颖性的进化。另一方面,当多倍体首次出现时,它们面临着许多挑战,其中最大的挑战之一是减数分裂配对、重组和分离,每条染色体突然超过两个拷贝,这可能会限制它们的生育能力。为了开发多倍体作为作物改良工具(由于多倍体具有高度和持久的多逆境适应能力,多倍体具有很大的前景),以及为了我们对减数分裂和植物进化的基本理解,我们需要知道多倍体面临挑战的具体性质,以及如何在进化中克服它们。近年来,我们对多倍体适应减数分裂挑战的分子基础的理解有了显著的提高,这是本综述的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Reproduction
Plant Reproduction PLANT SCIENCES-REPRODUCTIVE BIOLOGY
CiteScore
6.30
自引率
2.90%
发文量
19
期刊介绍: Plant Reproduction (formerly known as Sexual Plant Reproduction) is a journal devoted to publishing high-quality research in the field of reproductive processes in plants. Article formats include original research papers, expert reviews, methods reports and opinion papers. Articles are selected based on significance for the field of plant reproduction, spanning from the induction of flowering to fruit development. Topics incl … show all
期刊最新文献
Single and multiple buds form characteristics in Amorphophallus muelleri. A staging framework to study rice female gametophyte development. Bridging the gaps: advanced techniques to unlock lipid function in plant reproductive development. Mechanosensitive ion channel MSL8 is required for oscillatory growth and cell wall dynamics in Arabidopsis pollen tubes. Hormones and plant reproduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1