{"title":"Brain evolution and language: A comparative 3D analysis of Wernicke's area in extant and fossil hominids.","authors":"Harmony Hill, Marta Mirazón Lahr, Amélie Beaudet","doi":"10.1016/bs.pbr.2022.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>The spoken word does not fossilize. Despite this, scientists have long sought to unearth the origins of language within the human lineage. One of the lines of evidence they have pursued is functional brain areas, such as Broca's and Wernicke's areas, which are associated with speech production and comprehension, respectively. Sulcal layout of Broca's area clearly differs between humans and our closest living relatives, the chimpanzees, enabling its homolog in fossil hominins to be deemed more chimpanzee-like (i.e., closer to the ancestral form) or more human-like (i.e., derived form) with relative ease. Yet, no such differences have been found for Wernicke's area. This study compares sulcal and gyral organization of Wernicke's area across extant human brains (n=4), extant chimpanzee brains (n=5) and fossil hominin endocasts (n=4). Some chimpanzee brains had indications of leftward Wernicke's area asymmetry in the form of a shorter Sylvian fissure and/or caudal superior temporal gyral bulging in the left hemisphere. Overlap between the superior and middle temporal sulci in human but not chimpanzee brains may be due to a relatively larger Wernicke's area in humans. Fragmentation of the main body of the superior temporal sulcus exclusively in human left hemispheres was ascribed to a leftward Wernicke's area asymmetry in this species. Endocast examination found that, while Paranthropus robustus exhibit human-like overlap between the superior and middle temporal sulci, Australopithecus africanus do not, although they do exhibit chimpanzee-like caudal superior temporal gyral bulging. Such findings signal, albeit loosely, a more human-like Wernicke's area in Paranthropus than Australopithecus.</p>","PeriodicalId":20598,"journal":{"name":"Progress in brain research","volume":"275 ","pages":"117-142"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in brain research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.pbr.2022.12.001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 1
Abstract
The spoken word does not fossilize. Despite this, scientists have long sought to unearth the origins of language within the human lineage. One of the lines of evidence they have pursued is functional brain areas, such as Broca's and Wernicke's areas, which are associated with speech production and comprehension, respectively. Sulcal layout of Broca's area clearly differs between humans and our closest living relatives, the chimpanzees, enabling its homolog in fossil hominins to be deemed more chimpanzee-like (i.e., closer to the ancestral form) or more human-like (i.e., derived form) with relative ease. Yet, no such differences have been found for Wernicke's area. This study compares sulcal and gyral organization of Wernicke's area across extant human brains (n=4), extant chimpanzee brains (n=5) and fossil hominin endocasts (n=4). Some chimpanzee brains had indications of leftward Wernicke's area asymmetry in the form of a shorter Sylvian fissure and/or caudal superior temporal gyral bulging in the left hemisphere. Overlap between the superior and middle temporal sulci in human but not chimpanzee brains may be due to a relatively larger Wernicke's area in humans. Fragmentation of the main body of the superior temporal sulcus exclusively in human left hemispheres was ascribed to a leftward Wernicke's area asymmetry in this species. Endocast examination found that, while Paranthropus robustus exhibit human-like overlap between the superior and middle temporal sulci, Australopithecus africanus do not, although they do exhibit chimpanzee-like caudal superior temporal gyral bulging. Such findings signal, albeit loosely, a more human-like Wernicke's area in Paranthropus than Australopithecus.
期刊介绍:
Progress in Brain Research is the most acclaimed and accomplished series in neuroscience. The serial is well-established as an extensive documentation of contemporary advances in the field. The volumes contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry and the behavioral sciences.